Boundaries of non-separation flow-around of bodies of rotation, with the nose part in the form of Riabouchinsky half-cavity

Aeronautical and Space-Rocket Engineering

Aerodynamics and heat-exchange processes in flying vehicles


Аuthors

Kuznetsov E. N., Lunin V. Y.*, Panyushkin A. V.**, Chernyshev I. L.***

Central Aerohydrodynamic Institute named after N.E. Zhukovsky, TsAGI, 1, Zhukovsky str., Zhukovsky, Moscow Region, 140180, Russia

*e-mail: lunin@tsagi.ru
**e-mail: panyushkin@tsagi.ru
***e-mail: ivan.chernyshev@tsagi.ru

Abstract

Bodies that are optimal at the so-called low critical Mach number M*, at which at least one sonic point on the body flown-over surface occurs, were studied theoretically in Ref. [1]. It was confirmed that M* achieves its maximum value and, consequently, the wave drag minimum value occurred for the body identical to the Riabouchinsky finite cavity in the classical theory of incompressible fluids. It was experimentally studied in Ref. [12], which demonstrated that in the transonic velocities range the Riabouchinsky half- cavity had the smallest drag among the bodies of rotation with the same aspect ratio  λ=L/D=0.87(where L is the nose part length and D is the diameter of its mid-section). This conclusion is incorrect for aspect ratios λ>2 due to the friction impact the drag as it follows fr om Ref. [24]. The absence of turbulent boundary layer separation from the side surface of the body of rotation under study at zero angle of attack in the range of Mach numbers 0.8≤M≤0.95 was demonstrated in Ref [17].

The main objective of this work is determination of angles of attack αsep at which turbulent boundary layer separation from the side surface of the studied body occurs. The study was performed with NUMECA FINE/Open software based on Reynolds Averaged Navier-Stokes equations (RANS). The solution of the problem was performed in the framework of fully turbulent flow model without accounting for laminar-turbulent transition using Spalart-Allmaras (SA) and k-ω SST turbulence models. To determine the boundaries of the non-separated flow-around computation was performed in stationary problem setting at various angles of attack. With that, the flow separation indicator was the presence of the zone on the model surface wh ere the friction coefficient Cf < 0. The results obtained with two turbulence models are close to each other, and the difference between the two separation angles does not exceed 1°.

The results of the study obtained for αsep for the nose part with aspect ratio of are as follows:

αsep=15° for М=0.5, αsep=9° for М=0.65,

αsep=12° for М=0.8, αsep=13° for М=0.85,

αsep=5° for М=0.9, αsep=11° for М=0.95.

Computing results for the longer nose part with aspect ratio are:

αsep=20° for М=0.5, αsep=13° for М=0.7, αsep=21° for М=0.9, αsep=18° for М=0.95.

The angles of attack αsep which realize turbulent boundary layer separation from the side surface of the investigated body at free-stream Mach numbers 0.5≤M≤0.95 were obtained. Separation zones location is shown for various models and modes.

Keywords:

Riabouchinsky semi-cavity, body of rotation, transonic flow-around, boundary layer

References

  1. Gilbarg D., Shiffman M. On bodies achieving extreme values of the critical Mach number. Journal of Rational Mechanics and Analysis, 1954, vol. 3, no. 2, pp. 209–230.

  2. Birkhoff G., Zarantonello E.H. Jets, wakes and cavities. New York, Academic Press, 1957, 353 p.

  3. Riabouchinsky D. On steady fluid motions with free surfaces. Proceeding of the London Mathematical Society, 1921, vol. s2-19, issue 1, pp. 206–215. DOI: 10.1112/plms/s2-19.1.206

  4. Riabouchinsky D. Sur une probleme de variation. Comptes rendus de l'Acadйmie des Sciences, 1927, vol. 185, pp. 840–841.

  5. Friedrichs K. Über ein Minimumproblem für Potentialströmungen mit freiem Rand. Mathematischen Annalen. 1934. Bd. 109. H.1, s. 60–82.

  6. Garabedian P.R., Lewy H., Schiffer M. Axially symmetric cavitational flow. Annals of Mathematics, 1952, vol. 56, no. 3, pp. 560–602. DOI: 10.2307/1969661

  7. Garabedian P.R., Spencer D.C. Extremal methods in cavitational flows. Journal of Rational Mechanics and Analysis, 1952, vol. 1, no. 3, pp. 359–409.

  8. Loitsyanskii L.G. Mekhanika zhidkosti i gaza (Mechanics of liquid and gas), Moscow, Nauka, 1987, 824 p.

  9. Epshtein L.A. Techeniya okolo tel vrashcheniya pri malykh chislakh kavitatsii (Flows near the bodies of revolution at small cavitation numbers), Moscow, TsAGI, 1961, 14 p.

  10. Logvinovich G.V. Gidrodinamika techenii so svobodnymi granitsami (Hydrodynamics of flows with free boundaries), Kiev, Naukova dumka, 1969, 215 p.

  11. Kozhuro L.A. Uchenye zapiski TsAGI, 1980, vol. XI, no. 5, pp. 109–115.

  12. Vyshinskii V.V. and Kuznetsov E.N. Flow past bodies of revolution with a Riabouchinsky generatrix. Physics-Doklady, 1991, vol. 36, no. 11, pp. 731–732.

  13. Kuznetsov E.N. Tekhnika vozdushnogo flota, 2002, no. 12, pp. 24-26.

  14. Barinov V.A., Bolsunovskii A.L., Buzoverya N.P., Kuznetsov E.N., Skomorokhov S.I., Chernyshev I.L. Doklady Akademii nauk. Mekhanika, 2007, vol. 416, no. 4, pp. 474–476.

  15. Artamonova L.G., Radtsig A.N., Ryzhov Yu.A., Semenchikov N.V., Tarkhov E.L., Chernov G.F., Yakovlevskii O.V. Vestnik Moskovskogo aviatsionnogo instituta, 2005, vol. 12, no. 2, pp. 31-48.

  16. Krasnov N.F.., Koshevoi V.N., Kalugin V.T. Aerodinamika otryvnykh techenii (Aerodynamics of separated flows), Moscow, Vysshaya shkola, 1988, 351 p.

  17. Kuznetsov, E.N., Lunin V.Yu., Panyushkin A.V. and Chernyshev I.L. Intact flow over a rotating body with the nose part in the form of the Riabouchinsky half-cavity. TsAGI Science Journal, 2017, vol. 48, no. 3, pp. 243–249.

  18. Hirsch C. Numerical computation of internal and external flows: The fundamentals of computational fluid dynamics. Butterworth-Heinemann, 2007, 680 p.

  19. Spalart P.R., Allmaras S.R. A one-equation turbulence model for aerodynamic flows. 30th Aerospace Sciences Meeting and Exhibit, 1992, Reno, NV, U.S.A. AIAA Paper 1993-2906. DOI: 10.2514/6.1992-439

  20. Menter F.R. Zonal two-equation k-щ turbulence models for aerodynamic flows. 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference. Orlando, FL, U.S.A. AIAA Paper 1993-2906. DOI: 10.2514/6.1993-2906

  21. Garbaruk A.V., Strelets M.Kh., Shur M.L. Modelirovanie turbulentnosti v raschetakh slozhnykh techenii (Modeling of turbulence in calculation of complex flows), St.Petersburg, Politekhnicheskii institut, 2012, pp. 15–25.

  22. Nichols R.H. Turbulence Models and Their Application to Complex Flows. University of Alabama at Birmingham, Revision 4.01. 2010, 214 p.

  23. Vyshinskii V.V., Kuznetsov E.N. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 1988, no. 1, pp. 90–91.

  24. Kuznetsov E.N. The Effect of Friction on Drag for Bodies of Revolution with the Riabouchinsky Generatrix. Physics-Doklady, 1999, vol. 44, no. 7, p. 472.

mai.ru — informational site of MAI

Copyright © 1994-2019 by MAI