Shock absorber using inward-folding composite tube and its application to a crew seat: numerical simulation

Machine-building Engineering and Machine Science

Machine science, drive systems and machinery


Аuthors

Na L. .1, Zhefeng Y. .2*, Yi F. 2**

1. Shanghai Aircraft Design and Research Institute Commercial Aircraft Corporation of China, Shanghai, China, 201210
2. School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai, China, 200240

*e-mail: yuzf@sjtu.edu.cn
**e-mail: fuyi2015@sjtu.edu.cn

Abstract

This paper presents an innovative energy absorber consisting of an inward folding of composite tube, which is cut axially and turned into the inner of the itself. There is no excess of composite fragments after the composites destruction, and the debris will fill in the inner part of tube to increase the energy absorption. The impact energy is absorbed mainly by the fibers fractures, as well as delamination and friction between composite tube and the cylinder wall of the cap. Impact tests were performed to study the energy absorption performance. To study the shock absorber effect on the shock-resistance of the helicopter crew seat, a four-degree-of-freedom nonlinear biodynamic model corresponding to 50th-percentile male occupant was developed. The simulation results revealed a good shock-absorber shock-resistance performance.

Keywords:

Shock Absorber, Inward-folding, Composite, Helicopter seat, Biodynamic model

References

  1. Hamada H., Ramakrishna S. Effect of fiber material onenergy absorption behaviour of thermoplastic composite tubes. Thermoplastic Composite Materials, 1996, vol. 9, pp. 259–279. DOI: 10.1177/089270579600900304

  2. Chiu C.H., Lu C.K., Wu C.M. Crushing characteristics of 3 D braided composite square tubes. Composite Materials, 1997, vol. 31, no. 22, pp. 2309-2327. DOI: 10.1177/002199839703102205

  3. Jacob G.C., Fellers J.F., Simunovic S., Starbuck J.M. Energy absorption in polymer composites for automotive crashworthiness. Composite Materials, 2002, vol. 36, pp. 813–849.

  4. Farley G.L. Energy absorption of composite materials. Composite Materials, 1983, vol. 17, no. 3, pp. 267–279. DOI: 10.1177/002199838301700307

  5. Thornton P.H. Energy absorption in composite structures. Composite Materials, 1979, vol. 13, pp. 247–262. DOI: 10.1177/002199837901300308

  6. Hamada H., Coppola J.C., Hull D., Maekawa Z., Sato H. Comparison of Energy Absorption of Carbon/Epoxy and Carbon/Peek Composite Tubes. Composites, 1992, vol. 23, no. 4, pp. 245–252. DOI: 10.1016/0010-4361(92)90184-V

  7. Dubey D.D., Vizzini J.A. Energy absorption of composite plates and tubes. Composite Materials, 1998, vol. 32, no. 2, pp. 158–176. DOI: 10.1177/002199839803200204

  8. Thornton P.H., Harwood J.J., Beardmore P. Fiber-reinforced plastic composites for energy absorption purposes. Composites Science and Technology, 1985, vol. 24, no. 4, pp. 275–298. DOI: 10.1016/0266-3538(85)90026-0

  9. Thornton P.H., Edwards P.J. Energy absorption in composite tubes. Composite Materials, 1982, vol. 16, no. 1, pp. 521–545. DOI: 10.1177/002199838201600606

  10. Mamalis A.G., Yuan Y.B., Viegelahn G.L. Collapse of thin-wall composite sections subjected to high speed axial loading. Vehicle Design, 1992, vol. 13, no. 56, pp. 564–579. DOI: 10.1504/IJVD.1992.061748

  11. Hull D. A unified approach to progressive crushing of fiber-reinforced composite tubes. Composites Science and Technology, 1991, vol. 40, no. 4, pp. 377–421. DOI: 10.1016/0266-3538(91)90031-J

  12. Farley G.L. Effect of specimen geometry on the energy absorption capability of composite materials. Composite Materials, 1986, vol. 20, no. 4, pp. 390–400. DOI: 10.1177/002199838602000406

  13. Farley G.L., Jones R.M. Crushing characteristics of continuous fiber-reinforced composite tubes. Composite Materials, 1992, vol. 26, no. 1, pp. 37–50. DOI: 10.1177/002199839202600103

  14. Brachos V., Douglas C.D. Energy absorption characteristics of hybrid composite structures. 27th International SAMPE Technical Conference, Albuquerque, NM, 1995, pp. 421–435.

  15. Mamalis A.G., Robinson M., Manolakos D.E., Demosthenous G.A., Ioannidis M.B., Carruthers J.J. Crashworthy capability of composite material structures. Composite Structures, 1997, vol. 37, no. 2, pp. 109–134. DOI: 10.1016/S0263-8223(97)80005-0

  16. Fasanella E.L., Jackson K.E., Sparks C.E., Sareen A.K. Water impact test and simulation of a composite energy absorbing fuselage section. American Helicopter Society, 2005, vol. 50, no. 2, pp. 150-164. DOI: 10.4050/1.3092852

  17. Meng F.X., Zhou Q., Yang J.L. Improvement of crashworthiness behaviour for simplified structural models of aircraft fuselage. Crashworthiness, – 2009, vol. 14, no. 1, pp. 83–97. DOI: 10.1080/13588260802517360

  18. Fasanella E.L., Jackson K.E., Kellas S. Soft soil impact testing and simulation of aerospace structures. 10th International LS-DYNA Users Conference, Dearborn, MI, 2008, pp. 18-29 – 18-42. URL: https://www.dynalook.com/international-conf-2008/SimulationTechnology5-2.pdf/at_download/file

  19. Palanivelu S., Paepegem W., Degrieck J., Ackeren J., Kakogiannis D., Hemelrijck D., Wastiels J., Vantomme J. Experimental study on the axial crushing behavior of pultruded composite tubes. Polymer Testing, 2010, vol. 29, no. 2, pp. 224–234. DOI: 10.1016/ j.polymertesting. 2009.11.005

  20. Palanivelu S., Paepegem W., Degrieck J., Vantomme J., Kakogiannis D., Ackeren J., Hemelrijck D., Wastiels J. Crushing and energy absorption performance of different geometrical shapes of small-scale glass/polyester composite tubes under quasi-static loading conditions. Composite Structures, 2011, vol. 93, no. 2, pp. 992–1007. DOI: 10.1016/j.compstruct.2010.06.021

  21. Pein M., Heimbs S. Innovative energy-absorbing concept for aircraft cabin interior. International Workshop on Aircraft System Technologies (AST 2007), Hamburg, Germany, pp. 375–384.

  22. Garner D.M., Adams D. Test methods for composites crashworthiness: a review. Advanced Materials, 2008, vol. 40, no. 4, pp. 5–26.

  23. Meredith J., Ebsworth R., Coles S.R., Wood B.M., Kirwan K. Natural fiber composite energy absorption structures. Composites Science and Technology, 2012, vol. 72, no. 2, pp. 211–217. DOI: 10.1016/j.compscitech.2011.11.004

  24. Taher S.T., Zahari R., Ataollahi A., Mustapha F., Basri S. A double-cell foam-filled composite block for efficient energy absorption under axial compression. Composite Structures, 2011, vol. 89, no. 3, pp. 399–407. DOI: 10.1016/j.compstruct.2008.09.005

  25. Heimbs S., Strobl F., Middendorf P., Guimard J.M. Composite Crash Absorber for Aircraft Fuselage Applications. 11th International Conference on Structures under Shock and Impact (SUSI 2010, Tallinn, Estonia), vol. 113, pp. 3-14. DOI: 10.2495/SU100011

  26. Siromani D., Henderson G., Mikita D., Mirarchi K., Park R., Smolko J., Awerbuch J., Tan T.-M. An experimental study on the effect of failure trigger mechanisms on the energy absorption capability of CFRP tubes under axial compression. Composites Part A: Applied Science and Manufacturing, 2014, vol. 64, pp. 25-35. DOI: 10.1016/j.compositesa.2014.04.019

  27. Liu X.X., Shi J., Li G.H., Le X., Zhao B., Yue M., Liu J., Bai G., Ke W. Biodynamic Response and Injury Estimation of Ship Personnel to Ship Shock Motion Induced by Underwater Explosion. 69th Shock and Vibration Symposium, St. Paul, 1998, vol. 18, pp. 1-18.

  28. Patil M.K., Palanichamy M.S., Ghista D.N. Dynamic Response of Human Body Seated on a Tractor and Effectiveness of Suspension Systems. 21st Stapp Car Crash Conference-P-073, SAE 1977. Transactions-V86-A, vol. 86. Section 4: 770720771010, pp. 3221-3235. DOI: 10.4271/770932

  29. Singh H.J., Wereley N.M. Biodynamic Model of a Seated Occupant Exposed to Intense Impacts. AIAA Journal, 2015, vol. 53, no. 2, pp. 426-435. DOI: 10.2514/1.J053193

  30. Jackson K.E., Fasanella E.L., Boitnott R., McEntire J., Lewis A. Occupant Responses in a Full-Scale Crash Test of the Sikorsky ACAP Helicopter. American Helicopter Society, 2002, vol. 49, no. 2, pp. 127-139. DOI: 10.4050/JAHS.49.127

  31. Guimard J.M., Allix O., Pechnik N., Thevenet P. Energetic analysis of fragmentation mechanisms and dynamic delamination modelling in CFRP composites. Computers & Structures, 2009, vol. 87, no. 1516, pp. 1022-1032. DOI: 10.1016/j.compstruc.2008.04.021



mai.ru — informational site of MAI

Copyright © 1994-2019 by MAI