Computational and experimental evaluation of fatigue life characteristics of the transport category aircraft composite wing panels

Aeronautical and Space-Rocket Engineering

Design, construction and manufacturing of flying vehicles


Tudupova A. N.*, Strizhius V. E.**, Bobrovich A. V.***

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia



At the preliminary design stage of the aircraft (up to the detailed design stage and performing full-scale fatigue tests of airplane glider units), it is necessary to ensure the fulfilling requirements for fatigue and survivability of composite aircraft structural components. To start with, a computational evaluation of safe life span and damages non-progression in structural elements from polymer composite materials (PCM) should be performed.

The following evaluations should be performed to this end:

  1. Computational and experimental evaluation of the safe resource of elements of composite aircraft structures.

  2. Computational and experimental evaluation of non-progression of the first category of damage on the elements of composite aircraft structures over the entire period of the aircraft operation (up to reaching the operating time equal to the design service life of the aircraft).

  3. Computational and experimental evaluation of non-progression of the second category of damage on the elements of composite aircraft structures over the period between scheduled or targeted inspections, conducted through the certain intervals.

This article presents the basic regulatory requirements, methods and procedures for computational and experimental evaluations of the main fatigue life characteristics of composite wing panels at the outline design stage of a transport category aircraft. The example of computational and experimental evaluations of the safe resource and the frequency of inspections of the upper composite wing panel of a transport aircraft made of the AS4-PW carbon fiber laminate is presented. A number of important inferences was drawn.

The obtained results of computational and experimental evaluations of the life span characteristics of the upper composite panel of a wing from the AS4-PW carbon fiber laminate at the stage of outline design of the aircraft allow making the following conclusions:

  1. The expected safe resource of the upper panel is being actually determined by the computed safe resource of the panel in the zone of impact damage of the BVID type, which the value is 6.7 times less than the calculated safe resource of the upper panel in the free holes zone.

  2. The frequency of necessary inspections of the upper panel is determined, first of all, by the frequency of inspections of the panel in the impact damage zone of the VID type. The frequency of inspections is 5,300 flights and it actually determines the frequency of inspections according to the C-check maintenance form.

The obtained values of the safe resource and the frequency of inspections are within the range of real values of the life fatigue characteristics of the real aircraft, which allows concluding on the acceptability of such evaluations.


layered polymer composite materials, fatigue life, S-N curve, damages non-progression approach, safe-life, inspections frequency


  1. Aviatsionnye pravila. Ch. 25. Normy letnoi godnosti samoletov transportnoi kategorii (CASR Part 25. Airworthiness standards for airplanes of transport category), Moscow, Aviaizdat, 2009, 267 p.

  2. Dubinskii V.C., Konovalov V.V., Pankov A.V., Trunin Yu.P., Feigenbaum Yu.M. Otsenka dopustimosti povrezhdenii i ustalostnoi prochnosti konstruktsii RTs-AP25.571-1A. Konkurs TsAGI, Zhukovskii, 2015.

  3. 20-107B – Composite Aircraft Structure. U.S. Department of Transportation. Federal Aviation Administration. URL:

  4. Composite Materials Handbook. Vol 3. Polymer matrix composites materials usage, design, and analysis. AMS N/A AREA CMPS Distribution Statement A, Department of Defense, Philadelphia, PA, 2002.

  5. Tomblin J., Seneviratne W. Determining the Fatigue Life of Composite Aircraft Structures Using Life and Load-Enhancement Factors. Final Report DOT/FAA/AR-10/6. U.S. Department of Transportation, Federal Aviation Administration, June 2011.

  6. Bakuckas J.G., Chadha R., Swindell P., Fleming M., Lin J.Z., Ihn J.B., Desai N., Espinar-Mick E., Freisthler M. Bonded Repairs of Composite Panels Representative of Wing Structure. In: Niepokolczycki A., Komorowski J. (eds) ICAF 2019 – Structural Integrity in the Age of Additive Manufacturing. Lecture Notes in Mechanical Engineering. Springer, Cham, pp. 565-580. DOI: 10.1007/978-3-030-21503-3_45

  7. Kawai M., Itoh N. A failure-mode based anisomorphic constant life diagram for a unidirectional carbon/epoxy laminate under off-axis fatigue loading at room temperature. Journal of Composite Materials, 2014, vol. 48, no. 5, pp. 571–592. DOI: 10.1177/0021998313476324

  8. Kawai M., Yano K. Anisomorphic constant fatigue life diagrams of constant probability of failure and prediction of P–S–N curves for unidirectional carbon/epoxy laminates. International Journal of Fatigue, 2016, vol. 83, part 2, pp. 323-334. DOI: 10.1016/j.ijfatigue.2015.11.005

  9. Kawai M., Yano K. Probabilistic anisomorphic constant fatigue life diagram approach for prediction of P–S–N curves for woven carbon/epoxy laminates at any stress ratio. Composites Part A: Applied Science and Manufacturing, 2016, vol. 80, pp. 244–258. DOI: 10.1016/j.compositesa.2015.10.021

  10. Broer A.A.R. Fatigue life prediction of carbon fibre-reinforced epoxy laminates using a single S-N curve. Master of Science Thesis, Delft University of Technology, 2018, 139 p.

  11. Buimovich Y., Elmalich D. Examination of the KAWAI CLD Method for Fatigue Life Prediction of Composites. In: Niepokolczycki A., Komorowski J. (eds) ICAF 2019 – Structural Integrity in the Age of Additive Manufacturing. Lecture Notes in Mechanical Engineering. Springer, Cham, pp. 399-409. DOI: 10.1007/978-3-030-21503-3_31

  12. Harris B. A parametric constant-life model for prediction of the fatigue lives of fiber-reinforced plastics. Fatigue in composites. Woodhead Publishing Ltd and CRC Press LLC, 2003. DOI: 10.1016/B978-1-85573-608-5.50025-5

  13. Strizhius V.E. Nauchno-tekhnicheskie vedomosti SPbPU. Estestvennye i inzhenernye nauki, 2019, vol. 25, no. 3, pp. 120–132. DOI: 10.18721/JEST.25309

  14. Vassilopoulos A.P. (ed.) Fatigue life prediction of composites and composite structures. Woodhead Publishing Limited and CRC Press LLC, 2010, 576 p.

  15. Xiong J.J., Shenoi R.A. Two New Practical Models for Estimating Reliability-Based Fatigue Strength of Composites. Journal of Composite Materials, 2004, vol. 38, no. 14, pp. 1187-1209. DOI: 10.1177/0021998304042081

  16. Bendouba M., Aid A., Benguediab M. Fatigue Life Prediction of Composite Under Two Block Loading. Engineering, Technology & Applied Science Research, 2014, vol. 4, no. 1, pp. 587-590.

  17. Owen M.J., Howe R.J. The accumulation of damage in a glass-reinforced plastic under tensile and fatigue loading. Journal of Physics D: Applied Physics, 1972, vol. 5, no. 9, pp. 137-148. DOI: 10.1088/0022-3727/5/9/319

  18. Hwang W., Han K.S. Cumulative Damage Models and Multi-Stress Fatigue Life Prediction. Journal of Composite Materials, 1986, vol. 20, no. 2, pp. 125-153. DOI: 10.1177/002199838602000202

  19. Strizhius V. Fatigue life prediction of CFRP laminate under quasi-random loading. In: Niepokolczycki A., Komorowski J. (eds) ICAF 2019 – Structural Integrity in the Age of Additive Manufacturing. Lecture Notes in Mechanical Engineering. Springer, Cham, pp. 423-431. DOI: 10.1007/978-3-030-21503-3_33

  20. Strizhius V.E. Materialy II Mezhdunarodnoi konferentsii “Deformirovanie I razrushenie kompozitsionnykh materialov i konstruktsii” (18-20 October 2016, Moscow), Moscow, IMASh RAN, 2016, pp. 184-186.

  21. Amir’yants G.A., Malyutin V.A., Soudakov V.G., Chedrik A.V. On strength and aeroelastic characteristics of a large-scale model of an airplane wing section. Aerospace MAI Journal, 2019, vol. 26, no. 4, pp. 51-65. DOI: 10.34759/vst-2019-4-51-65

  22. Boldyrev A.V. Wing structural optimization under strength and stiffness constrains. Aerospace MAI Journal, 2009, vol. 16, no. 3, pp. 15-21. — informational site of MAI

Copyright © 1994-2020 by MAI