Application of acoustic methods for identification and characterization of full destruction harbingers of carbon fiber-reinforced polymers while strength experimental study

Aeronautical and Space-Rocket Engineering

Strength and thermal conditions of flying vehicles


Аuthors

Ryzhova T. B.1*, Petronyuk Y. S.2**, Morokov E. S.2***, Gulevskii I. V.1****, Levin V. M.2*****, Shanygin A. N.1******

1. Central Aerohydrodynamic Institute named after N.E. Zhukovsky, TsAGI, 1, Zhukovsky str., Zhukovsky, Moscow Region, 140180, Russia
2. Institute of Biochemical Physics, Russian Academy of Sciences, 4, Kosygina str., Moscow, 119334, Russia

*e-mail: tatyana.ryzhova@tsagi.ru, istctbr@mail.ru
**e-mail: jps7@mail.ru
***e-mail: es_morokov@yahoo.com
****e-mail: gulevsky@tsagi.ru
*****e-mail: levin1943@gmail.ru
******e-mail: alexander.shanygin@tsagi.ru

Abstract

A feature of polymer fiber-reinforced composites (PFRC) destruction is multi-focal point damages formation of microstructure under external impacts, their growth and coalescence, resulting in macro-damages formation and sudden destruction of a product. One of the factors impeding creation of the multi-level prognostic models of the PFRC destruction consists in limitation in non-destructive means, allowing study mechanisms of their internal structure damaging from micro- to macro-level.

A combination of two non-destructive acoustic methods was employed to study the multilevel damage

of a thick laminated carbon fiber-reinforced plastic (CFRP) with the [0°/ 90°]4S stacking under loading on uniaxial stretching and three-point bending. The acoustic emission (AE) method allows continuous monitoring of the internal structure integrity of the tested material and loading parameters recording while the damage initiation and growth. Multilevel visualization of the material internal structure, acoustic microscopy (AM), allows identification and characterization of its damages from micro- to macro-level.

The samples being tested were cut out of a panel of the 4.32 mm thickness, fabricated by the prepreg of a thick laminated carbon fiber-reinforced plastic (CFRP) with the [0°/ 90°]4S stacking under loading on uniaxial stretching and three-point bending. The acoustic emission (AE) method allows continuous monitoring of the internal structure integrity of the tested material and loading parameters recording while the damage initiation and growth. Multilevel visualization of the material internal structure, acoustic microscopy (AM), allows identification and characterization of its damages from micro- to macro-level.

The samples being tested were cut out of a panel of the 4.32 mm thickness, fabricated by the prepreg the harbingers of the full destruction of the material, namely:

– zones with high (critical) density of transverse matrix cracks in [90°] layers,

– the adhesion weakening/damaging along the «fiber-matrix» interfaces in [0°] layers,

– local fibers fractures.

Keywords:

laminated carbon fiber-reinforced plastic, stretching, three-point bending, total failure harbingers, damages accumulation, acoustic methods

References

  1. Mortell D.J., Tanner D.A., McCarthy C.T. An experimental investigation into multi-scale damage progression in laminated composites in bending. Composite structures, 2016, vol. 149, pp. 33-40. DOI: 10.1016/j.compstruct.2016.03.054

  2. Yang T., He M., Niu X., Du Y. Experimental investigation of the three-point bending fatigue properties of carbon fiber composite laminates. Advances in Material Science, 2016, vol. 1, no. 1, pp. 1-6. DOI: 10.18686/ams.v1i1.1

  3. Nairn J.A., Hu S. The Initiation and Growth of Delamination Induced by Matrix Microcracks in Laminated Composites. International Journal of Fracture, 1992, no. 57, pp. 1-24. DOI: 10.1007/ BF00013005

  4. Tabiei A., Zhang W. Composite Laminate Delamination Simulation and Experiment: A Review of Recent Development. Applied Mechanics Reviews, 2018, vol. 70, no. 3, p. 030801 (23 pages). AMR-17-1053. DOI: 10.1115/1.4040448

  5. Hosoi A., Yagi S., Nagata K., Kawada H. Interaction between transverse cracks and edge delamination considering free-edge effects in composite laminates. 16th International Conference on Composite Materials ICCM-16 (8-13 July 2007; Kyoto, Japan).

  6. Reis P.N.B., Ferreira J.A.M., Antunes F.V., Richardson M.O.W. Effect of Interlayer Delamination on Mechanical Behavior of Carbon/Epoxy Laminates. Journal of Composite Materials, 2009, vol. 43, no. 22, pp. 2609-2621. DOI: 10.1177/0021998309344649

  7. Jollivet T., Walaszek H., Terrien N. Damage and harmfulness of defects. JEC Composites Magazine, 2013, vol. 50, no. 81, pp. 70-76.

  8. Groot P.J., Wijnen P.A.M., Janssen R.B.F. Real-time Frequency Determination of Acoustic Emission for Different Fracture Mechanisms in Carbon/Epoxy Composites. Composite Science and Technology, 1995, vol. 55, no. 4, pp. 405-412. DOI: 10.1016/0266-3538(95)00121-2

  9. Su-Ping Ai, Chang-Hang Xu, Guo-Ming Chen, GuoRui Li Acoustic Emission Monitoring of Degradation in Plain Weave CFRP Laminate. AASRI International Conference on Industrial Electronics and Applications (27-28 June 2015; London, UK), vol. 2, pp. 63-67. DOI: 10.2991/iea-15.2015.17

  10. Silaev M.Y., Es’kova E.A., Gerus D.S., Remshev E.Y. Acoustic emission method application while determining mechanical characteristics of the brnicrsi-2,5-0,6-0,7 wire for elastic elements production. Aerospace MAI Journal, 2019, vol. 26, no. 2, pp. 182-192.

  11. Moreno M.C.S., Gutierrez A.R., Vicente J.L.M. Different response under tension and compression of unidirectional carbon fibre laminates in a three-point bending test. Composite Structures, 2016, vol. 136, pp. 706-711. DOI: 10.1016/j.compstruct.2015.06.017

  12. Garcea S.C., Wang Y., Withers P.J. X-ray computed tomography of polymer composites. Composites Science and Technology, 2018, vol. 156, pp. 305-319. DOI: 10.1016/j.compscitech.2017.10.023

  13. GOST 32656-2017 (ISO 527-4:1997, ISO 527-5:2009) Mezhgosudarstvennyi standart. Kompozity polimernye. Metody ispytanii. Ispytaniya na rastyazhenie (Polymer composites. Test methods. Tensile test methods. Interstate Standard 32656-2017 <ISO 527-4:1997, ISO 527-5:2009>), Moscow, Standartinform, 2017, 23 p.

  14. Raschety I ispytaniya na prochnost’. Metody mekhanicheskikh ispytanii kompozitsionnykh materialov s polimernoi matritsei (kompozitov). Metod ispytaniya ploskikh obraztsov na rastyazhenie pri normal’noi, povyshennoi i ponizhennoi temperaturakh. GOST 25.601-80 (Design calculation and strength testings. Methods of Mechanical testing of Polymeric Composite Materials Test for Tensile Properties on Plane Specimens at Normal, Elevated and Low Temperature. State Standard 25.601-80), Moscow, Standartinform, 2005, 15 p.

  15. Kompozity polimernye. Metod ispytaniya na izgib ploskikh obraztsov. GOST R 56810-2015 (Polymer composites. Test method for flexural flat samples. State Standard R 56810-2015), Moscow, Standartinform, 2016, 19 p.

  16. Summerscales J. (ed.) Non-Destructive Testing of Fibre- Reinforced Plastics Composites. Springer Netherlands, 1990. Vol. 1. Chapter 2. Arrington M. “Acoustic emission”, 493 p.

  17. Natsional’nyi standart Rossiiskoi Federatsii. Kontrol’ nerazrushayushchii. Akusticheskaya emissiya. Slovar’. GOST R ISO 12716-2009 (Non-destructive testing. Acoustic emission inspection. Vocabulary. National Standard of the Russian Federation R ISO 12716-2009), Moscow, Standartinform, 2019, 15 p.

  18. ASTME 1316-02 Standard Terminology for Nondestructive Examinations. ASTM International, West Conshohocken, PA, 2002. DOI: 10.1520/E1316-02

  19. Briggs A., Kolosov O. Acoustic Microscopy. Second Edition. Oxford University Press, 2010, 356 p.

  20. Zakutailov K.V., Levin V.M., Petronyuk Yu.S. Zavodskaya laboratoriya, 2009, no. 8(75), pp. 28-34.

  21. Timoshenko S.P. Soprotivlenie materialov. V 2-kh t. (Resistance of materials. In 2 vols), Moscow, Nauka, 1965, 368 p.

mai.ru — informational site of MAI

Copyright © 1994-2020 by MAI