Calculation results of temperature fields while grinding workpieces from titanium alloys by abrasive belts of various types

Aeronautical and Space-Rocket Engineering

Thermal engines, electric propulsion and power plants for flying vehicles


Аuthors

Balyakin A. V.*, Skuratov D. L.**

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

*e-mail: balaykinav@ssau.ru
**e-mail: skuratov-sdl56@ya.ru

Abstract

The article presents calculation technique, which allows defining temperature fields in the machining zone while workpices shaping at the belt grinding operations by abrasive belts of various types, such as the ones:

– with the solid working area;

– intermittent, containing areas with abrasive grains and without them;

– composite, containing areas with abrasive grains, solid lubricant and without abrasive grains.

The technique includes analytical dependences for the temperature fields calculating, as well as equations for the thermo-physical parameters defining, which are necessary for these calculations, and a table with the values of the coefficient, determining what share of the thermal power, released while grinding, enters the workpiece while various groups of materials machining.

The article presents the results of numerical experiment on temperature fields calculation, performed relating to the belt grinding operations of gas turbine engine blades from VT9 and VT20 titanium alloys by abrasive belts of various types, namely, solid, intermittent and composite. It follows from the results of the experiment that at grinding the blades workpieces of the gas turbine engine inlet guide vane from the VT20 titanium alloy, application of intermittent belt instead of the solid one allowed temperature reduction in the contact zone of about 17.5%. At the same time, composite belt application instead of the solid one while grinding blades of the low-pressure compressor of the gas turbine engine allowed average contact temperature reduction by 38%. It was found that, depending on the machining mode, application of abrasive belts with intermittent working surface, i.e. with the sections without grains, as well as ones without grains and with solid lubricant allowed significant reduction, or total elimination of the burn marks on the machined surfaces of the work pieces.

Application of the foregoing technique allows predicting both structural and phase states of the surface layer of the workpieces being machined while belt-grinding operations in the presence of the metastable phase diagrams of the materials being machined.

Keywords:

abrasive belt grinding, titanium alloys, compressor blades, temperature field calculation technique, calculation results

References

  1. Egorova Yu.B., Davydenko L.V., Chibisova E.V., Shmyrova A.V. The effect of chemical composition and heat treatment on mechanical properties of forgings from a pseudo-β-titanium alloy. Aerospace MAI Journal, 2018, vol. 25, no. 1, pp. 190-201.

  2. Veiga C., Davim J.P., Loureiro A. Properties and applications of titanium alloys: A brief review. Reviews on Advanced Materials Science, 2012, vol. 32, no. 2, pp. 133-148.

  3. Makoto Y. An overview on the development of titanium alloys for non-aerospace application in Japan. Materials Science and Engineering: A, 1996, vol. 213, no. 1–2, pp. 8-15. DOI: 10.1016/0921-5093(96)10241-0

  4. Ureña J., Gordo E.R., Ruiz-Navas E., Vilaboa N., Saldaña L., Jiménez-Morales A. Electrochemical comparative study on corrosion behavior of conventional and powder metallurgy titanium alloys in physiological conditions. Metal Powder Report, 2017, vol. 72, no. 2, pp. 118-123. DOI: 10.1016/j.mprp.2016.04.003

  5. Skublova L., Skorik V., Mrazikova R., Hadzima B. Corrosion resistance of Ti6Al4V titanium alloy with modified surfaces. Komunikacie, 2010, vol. 12, no. 4, pp. 80-84.

  6. Gorynin I.V. Titanium alloys for marine application. Materials Science and Engineering: A, 1999, vol. 263, no. 2, pp. 112-116. DOI: 10.1016/S0921-5093(98)01180-0

  7. Moiseyev V.N. Titanium Alloys. Russian Aircraft and Aerospace Applications. Boca Raton, CRC Press, 2006, 216 p.

  8. Zhang L.C., Chen L.Y., Wang L. Surface Modification of Titanium and Titanium Alloys: Technologies, Developments, and Future Interests. Advanced Engineering Materials, 2020, vol. 22, no. 5, 37 p. DOI: 10.1002/adem.201901258

  9. Leyens C., Peters M. Titanium and Titanium Alloys: Fundamentals and Applications. Wiley-VCH Verlag GmbH & Co, 2003, 532 p.

  10. Bratchikov A.Ya., Zvonovskikh V.V., Baboshkin A.F. Lentochnoe glubinnoe shlifovanie - novyi vid obrabotki (Tape creep grinding - a new type of machining), Leningrad, LDNTP, 1989, 20 p.

  11. Vakser D.B. Puti povysheniya proizvoditel’nosti abrazivnogo instrumenta pri shlifovanii (Ways to improve performance of abrasive tools in grinding), Moscow - Leningrad, Mashinostroenie, 1964, 136 p.

  12. Zubarev Yu.M., Baboshkin A.F. Materialy Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii “Vysokie tekhnologii v mashinostroenii”, Kharkov-Alushta, XGPU, 1998, pp. 38-40.

  13. Mitrevich K.S. Stanki i instrument, 1959, no. 7, pp. 12-14.

  14. Mitrevich K.S. Stanki i instrument, 1960, no. 4, pp. 25-29.

  15. Yunusov F.S., Borisovich G.V. Trudy KAI, 1971, no. 131, pp. 39-40.

  16. Yunusov F.S. Formoobrazovanie slozhnoprofil’nykh poverkhnostei shlifovaniem (Complex surfaces shaping by grinding), Moscow, Mashinostroenie, 1987, 246 p.

  17. . Yunusov F.S., Gubaidullin A.Yu., Druzhinin A.M. Vestnik mashinostroeniya, 1973, no. 8, pp. 70-71.

  18. Verezub V.N. Shlifovanie abrazivnymi lentami (Grinding with abrasive belts), Moscow, Mashinostroenie, 1972, 103 p.

  19. Grisenko E.V., Sudarikov A.S., Kudashkin V.N. Upravlenie kachestvom v mekhanicheskom proizvodstve, Sbornik statei, Perm, 1975, pp. 56-59.

  20. Zubarev Yu.M., Sikalova M.A. Povyshenie proizvoditel’nosti I kachestva obrabotki izdelii elektrofizicheskimi i kombinirovannymi metodami, Sbornik statei, Saint Petersburg, 1992, 59 p.

  21. Matalin A.A. Kachestvo poverkhnosti i dolgovechnost’ detalei mashin, Sbornik statei, Leningrad, LIZI, 1956, pp. 66-124.

  22. Tsuva X., Nakayama N. Rezhushchii instrument, 1970, no. 39, pp. 3-8.

  23. Yakimov A.V. Optimizatsiya protsessa shlifovaniya (Grinding process optimization), Moscow, Mashinostroenie, 1975, 176 p.

  24. Voloschenko A.V., Gerasimov I.V., Oleshko V.S., Tkachenko D.P. The burns-control of compressor blade of gas turbine engine of device “Surface-11”. Aerospace MAI Journal, 2012, vol. 19, no. 2, pp. 101-105.

  25. Pechenin V.A., Bolotov M.A. Analysis model and classification of the geometry of gas turbine engine blades. Aerospace MAI Journal, 2015, vol. 22, no. 2, pp. 55-65.

  26. Skuratov D.L., Balyakin A.V., Apkalimova Yu.Kh. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 2019, vol. 21, no. 1(87), pp. 98-104.

  27. Maslov E.N. Teoriya shlifovaniya metallov (Theory of metal grinding), Moscow, Mashinostroenie, 1974, 320 p.

  28. Sipailov V.A. Teplovye protsessy pri shlifovanii I upravlenie kachestvom poverkhnosti (Thermal processes in grinding and surface quality management), Moscow, Mashinostroenie, 1978, 167 p.

  29. Yakimov A.V. Abrazivno-almaznaya obrabotka fasonnykh poverkhnostei (Abrasive-diamond machining of profiled surfaces), Moscow, Mashinostroenie, 1984, 312 p.

  30. Uryvskii F.P. Vysokoeffektivnye metody mekhanicheskoi obrabotki zharoprochnykh i titanovykh splavov, Sbornik statei, Kuibyshev, KuAI, 1981, pp. 71-78.

  31. Skuratov D.L. Razrabotka i sovershenstvovanie tekhnologicheskikh metodov I sredstv, obespechivayushchikh povyshenie kachestva i snizhenie trudoemkosti izgotovleniya detalei GTD (Development and improvement of technological methods and tools that improve the quality and reduce the complexity of manufacturing parts of the gas turbine engine), Doctoral thesis. Samara, SGAU, 2004, 337 p.

mai.ru — informational site of MAI

Copyright © 1994-2020 by MAI