Efficiency improving of aviation bypass turbojet engines through recuperator application

Aeronautical and Space-Rocket Engineering

Thermal engines, electric propulsion and power plants for flying vehicles


Omar H. H.*, Kuz'michev V. S.**, Tkachenko A. Y.***

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

*e-mail: dr.hewa.omar@gmail.com
**e-mail: kuzm@ssau.ru
***e-mail: tau@ssau.ru


One of the trends for gas turbine engines cycle improving, allowing enhancing their efficiency, reducing specific fuel consumption and nitrogen oxides discharge, is exhaust gases regeneration through installing recuperator at the turbine outlet, in which a part of heat is being transferred to the air behind the compressor.

Comprehensive parameters optimization of the thermodynamic cycle of gas turbines, such as gas temperature T*4 and compressor pressure ratior r*, as well as parameters, defining the workflow of additional units like heat exchanger recovery factor, play an important role in its efficiency improving. Computer models of the bypass two-shaft turbojet engines with heat regeneration (TJER) developed in ASTRA CAE-system allowed realizing the problem solution of nonlinear multi-criteria optimization of their working process, and defining the most rational schemes depending of designated purpose and TJER operation conditions.

Based on the developed method of multi-criteria optimization numerical modelling was performed. The article presents the results of parameters optimization of the TJER working process in the system of Airbus A310 passenger plane by suc criteria as total mass of the power plant, and fuel consumed for the flight, as well as fuel consumption intensity per ton-kilometer and specific fuel consumption. The developed mathematical model for compact heat exchanger mass computing intended for solving optimization problems at the stage of conceptual design of the engine. The developed methods and models were realized in ASTRA CAE system.


bypass gas turbine engine, heat exchanger, thermodynamic cycle, mathematical model, optimization, criterion, working process parameters, recovery factor, optimal parameters area, calculation results


  1. McDonald C.F., Massardo A.F., Rodgers C., Stone A. Recuperated gas turbine aeroengines, part I: early development activities. Aircraft Engineering and Aerospace Technology, 2008, vol. 80, no. 2, pp. 139–157. DOI: 10.1108/00022660810859364

  2. McDonald C.F., Massardo A.F., Rodgers C., Stone A. Recuperated gas turbine aeroengines, part II: Engine design studies following early development testing. Aircraft Engineering and Aerospace Technology, 2008, vol. 80, no. 3, pp. 280-294. DOI: 10.1108/00022660810873719

  3. McDonald C.F., Massardo A.F., Rodgers C., Stone A. Recuperated gas turbine aeroengines. Part III: Engine concepts for reducedemissions, lower fuel consumption, and noise abatement. Aircraft Engineering and Aerospace Technology, 2008, vol. 80, no. 4, pp. 408-426. DOI: 10.1108/00022660810882773

  4. Zhang C., Gummer V. High temperature heat exchangers for recuperated rotorcraft powerplants. Applied Thermal Engineering, 2019, vol. 154, pp. 548–561. DOI: 10.1016/j.applthermaleng.2019.03.119

  5. Rolt A., Kyprianidis K. Assessment of new aero engine core concepts and technologies in the EU framework 6 NEWAC programme. 27th International Congress of the Aeronautical Sciences – ICAS’2010 (19–24 September 2010, Nice, France), 11 p. Paper No. 408.

  6. Bouty E., Paty G., Cheftel-Py B. SAGE 5 clean sky’s approach to quieter turboshaft engines. XX International Symposium on Air Breathing Engines, 2011, ISABE-2011-1303, pp. 736-741.

  7. Agul’nik A.B., Gusarov S.A., Omar H.H.O. Trudy MAI, no. 92. URL: http://trudymai.ru/eng/published.php?ID=77084

  8. Kuz’michev V.S., Omar H.H.О., Tkachenko A.Y. Effectiveness improving technique for gas turbine engines of ground application by heat regeneration. Aerospace MAI Journal, 2018, vol. 25, no. 4, pp. 133-141.

  9. Filinov E., Tkachenko A., Omar H.H.О., Rybakov V. Increase the Efficiency of a Gas Turbine Unit for Gas Turbine Locomotives by Means of Steam Injection into the Flow Section. The 2nd International Conference on Mechanical, System and Control Engineering (ICMSC 2018). 2018. Vol. 220. DOI: 10.1051/matecconf/201822003010

  10. Kulagin V.V., Kuz’michev V.S. Teoriya, raschet I proektirovanie aviatsionnykh dvigatelei i energeticheskikh ustanovok. Kn.1. Osnovy teorii GTD. Rabochii protsess i termogazodinamicheskii analiz (Theory, calculation and design of aircraft engines and power plants. Book 1 “Fundamentals of the GTD theory. Workflow and thermal-gas-dynamics analysis”), Moscow, 2017, Innovatsionnoe mashinostroenie, 2017, 336 p.

  11. Kulagin V.V. Teoriya, raschet i proektirovanie aviatsionnykh dvigatelei i energeticheskikh ustanovok. Kn. 3. Osnovnye problemy: Nachal’nyi uroven’ proektirovaniya, gazodinamicheskaya dovodka, spetsial’nye kharakteristiki i konversiya aviatsionnykh GTD (Theory, calculation and design of aircraft engines and power plants. Book 3 “Main problems: Initial level of design, gas-dynamic finishing, special characteristics and aviation GTE conversion”), Moscow, Mashinostroenie, 2005, 464 p.

  12. Maslov V.G., Kuz’michev V.S., Kovartsev A.N., Grigor’ev V.A. Teoriya i metody nachal’nykh etapov proektirovaniya aviatsionnykh GTD (Theory and methods of initial stages of aviation GTE design), Samara, SGAU, 1996, 147 p.

  13. Zhang C., Gummer V. The potential of helicopter turboshaft engines incorporating highly effective recuperators under various flight conditions. Aerospace Science and Technology, 2019, vol. 88, pp. 84–94. DOI: 10.1016/j.ast.2019.03.008

  14. Min J.K., Jeong J.H., Ha M.Y., Kim K.S. High temperature heat exchanger studies for applications to gas turbines. Heat and Mass Transfer, 2009, vol. 46, no. 2, pp. 175–186. DOI: 10.1007/s00231-009-0560-3

  15. Fakhre A., Pachidis V., Goulos I., Tashfeen M., Pilidis P. Helicopter mission analysis for a regenerated turboshaft engine. ASME Turbo Expo 2013: Turbine Technical Conference and Exposition (3–7 June 2013, San Antonio, Texas, USA). Vol. 2. Paper No. GT2013-94971.

  16. Utriainen E., Sundén B., Evaluation of the cross corrugation and some other candidate heat transfer surface for microturbine recuperators. Journal of Engineering for Gas Turbines and Power, 2002, vol. 124, no. 3, pp.550–560. DOI: 10.1115/1.1456093

  17. Xie G.N., Sundén B., Wang Q.W. Optimization of compact heat exchangers by a genetic algorithm. Applied Thermal Engineering, 2008, vol. 28, no. 8-9, pp. 895–906. DOI: 10.1016/j.applthermaleng.2007.07.008

  18. Xiao G., Yang T., Liu H. et al. Recuperators for micro gas turbines: a review. Applied Energy. 2017, vol. 197, pp. 83–99. DOI: 10.1016/j.apenergy.2017.03.095

  19. Kim M., Ha M.Y., Min J.K. et al. Numerical study on the cross-corrugated primary surface heat exchanger having asymmetric cross-sectional profiles for advanced intercooled-cycle aero engines. International Journal of Heat and Mass Transfer, 2013, vol. 66, pp. 139–153. DOI: 10.1016/j.ijheatmasstransfer.2013.07.017

  20. MacDonald C.F. Recuperator considerations for future higher efficiency microturbines. Applied Thermal Engineering, 2003, vol. 23, no. 12, pp. 1463-1487. DOI: 10.1016/S1359-4311(03)00083-8

  21. McDonald C.F. Low-cost compact primary surface recuperator concept for microturbines. Applied Thermal Engineering, 2000, vol. 20, no. 5, pp. 471–497. DOI: 10.1016/S1359-4311(99)00033-2

  22. McDonald C.F. Low cost recuperator concept for microturbine applications. ASME Turbo Expo 2000: Power for Land, Sea, and Air (8-11 May 2000, Munich, Germany), 2000. DOI: 10.1115/2000-GT-0167

  23. Traverso A., Massardo A.F. Optimal design of compact recuperators for microturbine application. Applied Thermal Engineering, 2005, vol. 25, no. 14-15, pp. 2054–2071. DOI: 10.1016/j.applthermaleng.2005.01.015

  24. Kuz’michev V.S., Omar H.H.O., Tkachenko A.Yu., Bobrik A.A. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii I mashinostroenie, 2019, vol. 18, no. 3, pp. 67-80. DOI: 10.18287/2541-7533-2019-18-3-67-80

  25. Kuz’michev V.S., Kulagin V.V., Krupenich I.N. et al. Trudy MAI, 2013, no. 67. URL: http://trudymai.ru/eng/published.php?ID=41518

  26. Grigor’ev V.A., Zhdanovskii A.V., Kuz’michev V.S., Osipov I.V., Ponomarev B.A. Vybor parametrov I termogazodinamicheskie raschety aviatsionnykh gazoturbinnykh dvigatelei (Parametersselection and thermo-gas-dynamics calculations of aviation gas turbine engines), Samara, SGAU, 2009, 202 p.

mai.ru — informational site of MAI

Copyright © 1994-2020 by MAI