Search for optimal power plant to improve maneuverable aircraft efficiency

Aeronautical and Space-Rocket Engineering

Thermal engines, electric propulsion and power plants for flying vehicles


Sklyarova A. P.1*, Gorbunov A. A.1**, Zinenkov Y. V.2***, Agul'nik A. В.1****, Vovk M. Y.3*****

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. MESC Air Force “Air Force Academy named after professor N.E. Zhukovskii and Yu.A. Gagarin”, 54a, Starykh bol'shevikov, Voronezh, 394064, Russia
3. A.Lyulka Design Bureau - a branch of the Ufa Engine Industrial Association, 13, Kasatkina str., Moscow, 129301, Russia



The presented work proves possible power plant reequipping options of the Su-27 type fourth generation fighter with new engines.

The research scientific task was formulated for this purpose. The set task consists in effectiveness assessing of the Su-27 type multifunctional fighter with the power plant based on the operational bypass turbojet with flows mixing and Al-31F afterburner, and the four options of its re-motorization while typical flight task performing using methods of mathematical modeling.

The aircraft re-deployment from airfield No. 1 to airfield No. 2 was assumed as a flight task, which was stipulated by sufficient technical substantiation for the decisions made, with relative simplicity of the engineoperation mode modeling

Technical parameters, characterizing the aircraft under study on the assumption of its assignation, namely the total flight range and climbing capacity, were assumed as the performance criteria. These criteria are controversial since the climbing capacity relates directly to the thrust-to-weight ratio, while the flight range relates to it inversely, having herewith a certain local optimum, which means that the effectiveness assessment can be soundly performed by these technical criterions.

The research technique was developed by the authors based on the multi-disciplinary analysis methodology and development of “Aircraft – Power plant” system technical profile at the preliminary design stages. The ThermoGTE and “Aircraft-Engine”instrumental-software systems, being more than once approved in aviation industry and demonstrated high efficiency, were employed as the basic tools for performing computational-theoretical studies.

Parameters and characteristics computing of the power plant was being performed in ThermoGTE. The data arrays on altitude-airspeed performance were being imported hereafter to the «Aircraft-Engine» software for subsequent trajectory parameters computing. Aerodynamic scheme of the object under study, by which aerodynamic and specific-weight characteristics of the aircraft, the flight program and profile, consisting of fifteen sections, were computed, was formed as well. The engine operation modes and conditions of execution were defined for each segment of this flight program.

As the result of the performed studies, values of trajectory parameters of the studied aircraft motion with five options of the power plant layouts being studied while the flight task performing. Efficiency assessment of the aircraft under study by the assumed criteria, which demonstrated the possibility of its efficiency improvement compared to the power plant based on the AL-31F engine, was performed.

This work practical value consists in the fact that its results can be employed in scientific and design organizations, engaged in development and modernization of serial and prospective aircraft and their power plants; Air Force and aviation industry ordering organizations while substantiating requirements to aviation engineering prototypes; as well as aviation engineering universities while educational process improving.


re-motorization, low-pressure circuit, efficiency criteria, aircraft, power plant, altitude and speed characteristics, throttle characteristics


  1. Yakubovich N.V. Vse aviashedevry Sukhogo — ot Su-2 do Su-27 i T-50 (All Sukhoi air maneuvers – from SU-2 to SU-27 and T-50), Moscow, Eksmo, 2015, 480 p.

  2. Chernov I.Yu., Zinenkov Yu.V. Materialy XII Vserossiiskoi nauchno-prakticheskoi konferentsii studentov i aspirantov (4-5 December 2019), Irkutsk, Irkutskii filial MGTU GA, 2019, pp. 170-175.

  3. Moroz S. Armeiskii vestnik. Internet-zhurnal ob armii, vooruzhenii i tekhnike, 2018. URL:

  4. Voennoe obozrenie, 2020. URL:

  5. Antonov D.A., Babich R.M., Balyko Yu.P. et al. Aviatsiya VVS Rossii i nauchno-tekhnicheskii progress. Boevye kompleksy i sistemy vchera, segodnya, zavtra: monografiya (Russia air force aviation and scientific-technical progress. Combat complexes and systems yesterday, today, tomorrow), Moscow, Drofa, 2005, 734 p.

  6. Myshkin L.V. Prognozirovanie razvitiya aviatsionnoi tekhniki: teoriya i praktika (Development forecasting of aviation technology: theory and practice), Moscow, Fizmatlit, 2006, 304 p.

  7. Egorov I.N., Kretinin G.V., Leshchenko I.A. Optimal design and control of gas-turbine engine components: a multicriteria approach. Aircraft Engineering and Aerospace Technology, 1997, vol. 69, no. 6, pp. 518-526.

  8. Zinenkov Y.V., Lukovnikov A.V., Cherkasov A.N. Estimation of the effectiveness of a power plant for a high-altitude unmanned aerial vehicle. Aerospace MAI Journal, 2015, vol. 22, no. 3, pp. 91-102.

  9. Lukovnikov A.V. Polet, 2007, no. 7, pp. 28-38.

  10. Lukovnikov A.V. A conceptual design of aircraft propulsion systems in multidisciplinary statement. Aerospace MAI Journal, 2008, vol. 15, no. 3, pp. 34-43.

  11. Lukovnikov A.V. Nauchnyi vestnik MGTU GA, 2008, no. 134, pp. 16-24.

  12. Korsun O.N., Leshchenko I.A., Nemichev M.V. Mekhatronika, avtomatizatsiya, upravlenie, 2011, no. 11, pp. 50-54.

  13. Kretinin G.V., Leshchenko I.A., Fedechkin K.S., Neskoromnyi E.V., Egorov I.N. Nasosy. Turbiny. Sistemy, 2014, no. 2 (11), pp. 47-55.

  14. Marchukov E.V., Leshchenko I.A., Vovk M.Yu., Inyukin A.A. Nasosy. Turbiny. Sistemy, 2015, no. 2 (15), pp. 45-53.

  15. Shmotin Yu.N., Kikot’ N.V., Kretinin G.V., Leshchenko I.A., Fedechkin K.S. Nasosy. Turbiny. Sistemy, 2016, no. 2 (19), pp. 40-48.

  16. Fokin D.B., Lukovnikov A.V., Suntsov P.S. Features of mathematical modelling of dual-mode scramjet working process. Aerospace MAI Journal, 2011, vol. 18, no. 2, pp. 137-145.

  17. Suntsov P.S., Lukovnikov A.V., Fokin D.B. Trudy MAI, 2011, no. 46. URL:

  18. Dulepov N.P., Lanshin A.I., Lukovnikov A.V., Semenov V.L., Kharchevnikova G.D., Fokin D.B., Suntsov P.S. Effectiveness of two-mode hypersonic ramjet engines in hybrid aerospace power units. Russian Engineering Research, 2011, vol. 31, no. 8, pp. 764-770.

  19. Dulepov N.P., Surikov E.V., Lukovnikov A.V., Kharchevnikova G.D., Suntsov P.S., Fokin D.B. Vestnik mashinostroeniya, 2012, no. 7, pp. 28-34.

  20. Nazarov A.P. Turboreaktivnyi dvukhkonturnyi dvigatel’ s forsazhnoi kameroi sgoraniya AL-31F (Two-circuit turbojet engine with AL-31F afterburner combustion chamber), Moscow, VVIA im. Zhukovskogo, 1987, 363 p.

  21. Dvigatel’ Al-41F-1S. Rukovodstvo po ekspluatatsii (The al-41F-1C engine. Operation manual), Moscow, NPO “Saturn” nauchno-tekhnicheskii tsentr im. A. Lyul’ki, 2010, 343 p.

  22. Gritsenko N.A., Ikryannikov E.D. Raschet aerodinamicheskikh kharakteristik LA (Calculation of aircraft aerodynamic characteristics), Moscow, VVIA im. prof. N.E. Zhukovskogo, 1994, 259 p.

  23. Lukovnikov A.V. Naukoemkie tekhnologii, 2008, vol. 9, no. 3, pp. 50-58. — informational site of MAI

Copyright © 1994-2020 by MAI