Приближенный метод оценки остаточной прочности композитных тонкостенных элементов конструкции ЛА при наличии низкоскоростного ударного повреждения

Авиационная и ракетно-космическая техника

2025. Т. 32. № 4. С. 137-146.

Авторы

Гарифуллин М. Ф., Казаков И. А.*, Киреев В. А.

Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского (ЦАГИ), ул. Жуковского, 1, Жуковский, Московская область, 140180, Россия

*e-mail: normist@tsagi.ru

Аннотация

Рассмотрены упрощенные расчетные модели, применяемые для оценки остаточной прочности композитных пластин с ударным повреждением. Отмечены их основные преимущества и недостатки, а также границы применимости. Предложена модель изменения деградации упругих свойств композитного материала в области повреждения. С помощью этой модели выполнены расчеты концентрации напряжений вокруг дефекта с исходными данными, приведенными в литературе. Рассмотрен вариант использования эмпирической зависимости для определения степени деградации свойств на основе данных о размерах повреждения. 

Ключевые слова:

остаточная прочность композитных пластин, низкоскоростные ударные повреждения, концентрация напряжений в зоне дефектов

Список источников

  1. Bezzametnov ON, Mitryaikin VI, Khaliulin VI. Low-speed impact testing of various composites. Aerospace MAI Journal. 2019;26(4):216-229. DOI: 10.34759/vst-2019-4-216-229
  2.  Bezzametnov ON, Mitryaikin VI, Khaliulin VI, et al. Developing technique for impact action resistance determining of the aircraft parts from composites with honeycomb filler. Aerospace MAI Journal. 2020;27(3):111-125. DOI: 10.34759/vst-2020-3-111-125
  3.  Bezzametnov ON, Mitryaikin VI, Khaliulin VI, et al. Impact damages effect assessment on compressive strength of integral panels from polymer composite materials. Aerospace MAI Journal. 2021;28(4):78-91. DOI: 10.34759/vst-2021-4-78-91
  4.  Mitryaikin VI, Zakirov RK, Bezzametnov ON, et al. Non-destructive testing of shock and bullet damages to composite structures. Aerospace MAI Journal. 2023;30(1):227-239. DOI: 10.34759/vst-2023-1-227-239
  5.  Liu H, Falzon BG, Tan W. Predicting the Compression-After-Impact (CAI) strength of damage-tolerant hybrid unidirectional / woven carbon-fibre reinforced composite laminates. Composites Part A: Applied Science and Manufacturing. 2018;105:189–202. DOI: 10.1016/j.compositesa.2017.11.021
  6.  Tuo H, Lu Z, Ma X, et al. Damage and failure mechanism of thin composite laminates under low-velocity impact and compression-after-impact loading condition. Composites Part B: Applied Science and Manufacturing. 2019;163:642–654. DOI: 10.1016/j.compositesb.2019.01.006
  7.  Shabani P, Li L, Laliberte J, et al. Compression after impact (CAI) failure mechanisms and damage evolution in large composite laminates: High-fidelity simulation and experimental study. Composite structures. 2024;339:118143. DOI: 10.1016/j.compstruct.2024.118143
  8.  Belousov IS, Zheleznov LP, Burnysheva TV. Compression Test Simulation of Layered Composites with Delamination. Aerospace MAI Journal. 2024;31(1):93-104. (In Russ.).
  9.  Whitney JM, Nuismer RJ. Stress fracture criteria for laminated composite containing stress concentrations. Journal of Composite Materials. 1974;8(3):253–265. DOI: 10.1177/002199837400800303
  10.  Puhui C, Zhen S, Junyang W. A new method for compression after impact strength prediction of composite laminates. Journal of Composite Materials. 2002;36(5):589–610. DOI: 10.1177/0021998302036005497
  11.  Soutis C. Damage tolerance of open-hole CFRP laminates loaded in compression. Composites Engineering. 1994;4(3):317-321,323-327. DOI: 10.1016/0961-9526(94)90082-5
  12.  Hawyes VJ, Curtis PT, Soutis C. Effect of impact damage on the compressive response of composite laminates. Composites Part A: Applied Science and Manufacturing. 2001;32(9):1263–1270.
  13.  Soutis C, Curtis PT. Prediction of the post-impact compressive strength of CFRP laminated composites. Composites Science and Technology. 1996;56:677–684. DOI: 10.1016/0266-3538(96)00050-4
  14.  Guild FJ, Hogg PJ, Prichard JC. A model for the reduction in compression strength of continuous fiber composites after impact damage. Composites. 1993;24. (4):333–339.
  15.  Berbinau P, Filiou C, Soutis C. Stress and failure analysis of composite laminates with an inclusion multiaxial compression-tension loading. Applied Composite Materials. 2001;8(5):307–326. DOI: 10.1023/A:1011279721719
  16.  Russell S. Stress field model for impact damage evaluation in composites. CANCOM – Canadian-International Conference on Composites (17-20 July 2017; Ottawa, ON, Canada).
  17.  Mal’kov VM, Mal’kovа YV. Deformation of a plate with elliptic elastic inclusion. Vestnik SPbGU. 2015;2(4):617–632. (In Russ.).
  18.  Kassapoglou C. Modeling the Effect of Damage in Composite Structures: Simplified Approaches. John Wiley and Sons Ltd; 2015. 230 p. DOI: 10.1002/9781119013228
  19.  Margueres Ph, Meraghni F, Benzeggagh ML. Determination of stiffness reduction and damage accumulation monitoring in composite materials using ultrasonic techniques. 12th International Conference on Composite Materials (05-09 July 1999; Paris).
  20.  Sztefek P, Olsson R. Tensile stiffness distribution in impacted composite laminates determined by an inverse method. Composites Part A: Applied Science and Manufacturing. 2008;39(8):1282-1293. DOI: 10.1016/j.compositesa.2007.10.005
  21.  Sztefek P, Olsson R. Nonlinear compressive stiffness in impacted composite laminates determined by an inverse method. Composites Part A: Applied Science and Manufacturing. 2008;40(3):260-272. DOI: 10.1016/j.compositesa.2008.12.002
  22.  Yang Y. A numerical study of damage mechanisms in the CAI of laminated composites for aerospace application. PhD Thesis. University of Nottingham; 2015. 365 p.
  23.  Craven R, Iannucci L, Olsson R. Homogenized non-linear soft inclusion for simulation of impact damage in composite structures. Composite Structures. 2011;93(2):952–960. DOI: 10.1016/j.compstruct.2010.06.026
  24.  Różyło P, Dębski H, Kubiak T. A model of low-velocity impact damage of composite plates subjected to compression-after-impact (CAI) testing. Composite Structure. 2017;181(3):158–170. DOI: 10.1016/j.compstruct.2017.08.097
  25.  Borovskaya YaS, Glebova MA, Grishin VI, et al. Assessment of the strength of metal-composite compounds using the measurement criterion. Uchenye zapiski TsAGI. 2018;XLIX(2):84–96. (In Russ.).
  26.  Golovan VI, Grishin VI, Dzyuba AS, et al. Design, calculations and static tests of metal composite structures. Moscow: Reklamno-izdatel'skii tsentr “Tekhnosfera”; 2022. 408 p. (In Russ.).

mai.ru — информационный портал Московского авиационного института

© МАИ, 1994-2025