Applying a modified surface mesh wrapping method for numerical simulation of icing processes

Aeronautical and Space-Rocket Engineering

Aerodynamics and heat-exchange processes in flying vehicles


Аuthors

Gulimovskii I. A.*, Greben’kov S. A.**

Central Institute of Aviation Motors named after P.I. Baranov, CIAM, 2, Aviamotornaya str., Moscow, 111116, Russia

*e-mail: brotdieb@yandex.ru
**e-mail: sagrebenkov@ciam.ru

Abstract

Flight safety in drastic meteorological conditions remains an extremely important task to this day. With the advent of high-performance computing software, allowing perform simulation of complex physical phenomena with plausible degree of accuracy, a wide spectrum of research trends, helping specialists all over the world study in most detail those phenomena, which could studied earlier by performing the full-scale experiment, is being opened.

The topic of the presented work is the surface wrapping method (SWM method) adaptation to increase modeling quality of the aircraft icing processes to predict more accurately the places, shape and size of ice deposits for further activities on the anti-icing systems design and testing techniques, including certification ones, development.

The essence of this method consists in transforming created mesh surface to the area of the target object. The original mesh may be of a uniform structure with the same distances between nodes, or an adaptive one with dimensions that are a function of the curvature and characteristic dimensions of the object body. The SWM method mathematical model can be based on nodes displacement along the normal to the target object, or on minimizing the function of the node displacement energy. The resulting offset nodes are used for the object surface mesh restructuring, and building volume elements in the entire area in totality In the framework of icing numerical modeling, elements elongation due to the large curvature of the ice, often inherent in the “glassy” type, may lead at a certain moment to the mesh zone overlapping, formation of closed volumes, elements “degeneration” and other defects. Thus, this method algorithm is supplemented by modifying the separation of the low-quality mesh element into several ones, and preliminary diagnostics of the sharp “peaks” presence, point contact of cells and nodes and determination of macro cavities with their coordinates derivation As the result of the suggested method application, the authors managed to obtain complex shapes of the ice buildups much more closer to the experimental data compared to the conventional smoothing techniques, employed in the majority of computing software.

The above described approach application brings prediction quality of the shape and size of ice deposits to the new level, especially on the thin elements of blades profiles and guide vanes, as well as under icing conditions, when buildups of rather complex shape might occur, including air inclusions inside as well.

Keywords:

adaptation of numerical surface mesh, facet model wrapping method, mesh area restructuring, aircraft elements icing

References

  1. Ferschitz H., Wannemacher M., Bucek O., Knöbel F. et al. Development of SLD Capabilities in the RTA Icing Wind Tunnel. SAE International Journal of Aerospace. 2017, vol. 10, no. 1. DOI: 10.4271/2017-01-9001.

  2. Protat A., McFarquhar G.M., Um. J., Delanoë J. Obtaining Best Estimates for the Microphysical and Radiative Properties of Tropical Ice Clouds from TWP-ICE In Situ Microphysical Observations. Journal of Applied Meteorology and Climatology, 2011, vol. 50, no. 4, pp. 895–915. DOI: 10.1175/2010jamc2401.1

  3. Certification Specifications and Acceptable Means of Compliance for Large Aeroplanes CS-25. European Aviation Safety Agency, Amendment 24, 10 January 2020.

  4. Oliver M.J. Validation Ice Crystal Icing Engine Test in the Propulsion Systems Laboratory at NASA Glenn Research Center. 6th AIAA Atmospheric and Space Environments Conference (16-20 June 2014, Atlanta, GA). AIAA 2014-2898. DOI: 10.2514/6.2014-2898

  5. Goriachev A., Zhulin V., Goriachev P., Grebenkov S. Experimental Processing of Methodical Questions of Modeling the Atmospheric Cloud Containing Ice Crystals and Mixed Phase. SAE Technical Paper 2019-01-1922. DOI: 10.4271/2019-01-1922.

  6. Kelly D., Habashi W.G., Quaranta G., Masarati P., Fossati M. Ice Accretion Effects on Helicopter Rotor Performance, via Multibody and CFD Approaches. Journal of Aircraft, 2018, vol. 55, no. 3, pp. 1165–1176. DOI: 10.2514/1.c033962

  7. Trontin P., Blanchard G., Kontogiannis A., Villedieu P. Description and assessment of the new ONERA 2D icing suite IGLOO2D. 9th AIAA Atmospheric and Space Environments Conference (5-9 June 2017, Denver, Colorado). DOI: 10.2514/6.2017-3417

  8. Pendenza A., Habashi W.G., Fossati M. A 3D mesh deformation technique for irregular in-flight ice accretion. International Journal for Numerical Methods in Fluids, 2015, vol. 79, no. 5, pp. 215–242. DOI: 10.1002/fld.4049

  9. Pendenza A. A Robust Mesh Deformation Technique for Long-term Ice Accretion Simulations. McGill University, Montreal, Quebec Department of Mechanical Engineering, 2015. URL: http://digitool.library.mcgill.ca/thesisfile135544.pdf

  10. Tong X., Thompson D., Arnoldus Q., Collins E., Luke E. Three-Dimensional Surface Evolution and Mesh Deformation for Aircraft Icing Applications. Journal of Aircraft, 2017, vol. 54, no. 3, pp. 1047–1063. DOI: 10.2514/1.c033949

  11. de Goes F., Martinez A. Mesh wrap based on affine-invariant coordinates. Conference SIGGRAPH ‘2019, no. 4, pp. 1–2. DOI: 10.1145/3306307.3328162

  12. Budninskiy M., Liu B., Tong Y., Desbrun M. Spectral Affine-Kernel Embeddings. Computer Graphics Forum «Symposium on Geometry Processing» SGP-2017, vol. 36, no. 5, pp. 117–129. DOI: 10.1111/cgf.13250

  13. Sigal I.A., Hardisty M.R., Whyne C.M. Mesh-morphing algorithms for specimen-specific finite element modeling. Journal of Biomechanics,2008, vol. 41, no. 7, pp. 1381–1389. DOI: 10.1016/j.jbiomech.2008.02.019

  14. Lee Y.K., Lim C.K., Ghazialam H., Vardhan H., Eklund E. Surface mesh generation for dirty geometries by the Cartesian shrink-wrapping technique. Engineering with Computers, 2009, vol. 26, no. 4, pp. 377–390. DOI: 10.1007/s00366-009-0171-0

  15. Artemiev A.Yu. Rapid error-bounded simplification of a 2.5-dimensional triangular mesh. Aerospace MAI Journal, 2009, vol. 16, no. 6, pp. 204-212.

  16. Vargas M., Broughton H., Sims J.J., Bleeze B., Gaines V. Local and Total Density Measurements in Ice Shapes. 43rd Aerospace Sciences Meeting and Exhibit. NASA/TM–2005-213440. AIAA–2005–0657. URL: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20050160244.pdf

  17. Menter F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 1994, vol. 32, no. 8, pp. 1598–1605. DOI: 10.2514/3.12149

  18. Myers T.G. Extension to the Messinger Model for Aircraft Icing. AIAA Journal, 2001, vol. 39, no. 2, pp. 211–218. DOI: 10.2514/2.1312

  19. Shin J. Characteristics of surface roughness associated with leading-edge ice accretion. Journal of Aircraft, 1996, vol. 33, no. 2, pp. 316-321. DOI: 10.2514/3.46941

  20. Cao Y., Ma C., Zhang Q., Sheridan J. Numerical simulation of ice accretions on an aircraft wing. Aerospace Science and Technology, 2012, vol. 23, no. 1, pp. 296–304. DOI: 10.1016/j.ast.2011.08.004

  21. Hu L., Zhu X., Chen J., Shen X., Du Z. Numerical simulation of rime ice on NREL Phase VI blade. Journal of Wind Engineering and Industrial Aerodynamics, 2018, vol. 178, pp. 57–68. DOI: 10.1016/j.jweia.2018.05.007

mai.ru — informational site of MAI

Copyright © 1994-2020 by MAI