Elaborating new specific parameters of a jet engine

Aeronautical and Space-Rocket Engineering

Thermal engines, electric propulsion and power plants for flying vehicles


Аuthors

Altunin K. V.

Kazan National Research Technical University named after A.N. Tupolev, KNRTU-KAI, 10, Karl Marks str., Kazan, 420111, Russia

e-mail: altkonst881@yandex.ru

Abstract

The presented article deals with the new specific parameters elaboration necessary for more qualitative analysis of a jet engine operating on liquid hydrocarbon fuels. The purpose of the article consists in elaborating specific parameters, which would be able to account for the degree of carbonization and failure of the jet engine nozzles with the time of operation.

Theoretical work on the sources of information reviewing and analysis of various existing specific criteria was performed. Earlier, experimental studies with hydrocarbon fuel were also conducted, which proved one more time that thermal precipitation formation in the fuel supplying ducts was one of the main factors of the jet engine operation effectiveness reduction and its thrust characteristics.

The results of this research consist in – developing and subsequent pending of the novel inventions with the methods of prevention and control of thermal precipitation formation:

– creating the plot of the thrust decay of the jet engine depending on the degree of nozzles carbonization;

– obtaining new specific parameters of the jet engines qualitative analysis in dependence of nozzles operability.

The scope of the research findings application includes diagnostics of both military and civil aviation jet engines; broadening the technique for complex and qualitative analysis of jet engines with the best engine scheme selection; scientific research for the purpose of creating effective monitoring system for the nozzles failure both on the ground and in the air and space.

At present, the problem of thermal deposits occurring on the walls of the fuel-feeding ducts, nozzles and sprayers is still staying unsolved. There is no complete theory of the thermal precipitations formation. The same relates to the complete theory of the thrust reduction of the jet engine due to the thermal deposits and failure of nozzles, filters and sprayers. It is worth mentioning that the existing parameters, characterizing the quality and perfection of jet engines, such as specific thrust, specific mass etc. do not account for the degree of nozzles carbonization with their possible failure. Application of new specific parameters, such as parameters presented in the article, is necessary for the purpose of more qualitative analysis of the jet engines characteristics.

The article outlines the ways of further theoretical and experimental studies.

Keywords:

jet engine, specific parameter, thrust, fuel, nozzle

References

  1. Tsybizov Yu.I., Shelud’ko L.P. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika S.P. Koroleva, 2009, no. 3-3(19), pp. 83-88.

  2. Alemasov V.E., Dregalin A.F., Tishin A.P. Teoriya raketnykh dvigatelei (Theory of rocket engines), Moscow, Mashinostroenie, 1969, 547 p.

  3. Alemasov V.E., Dregalin A.F., Tishin A.P. Theory of rocket engines (Theory of rocket engines), Moscow, Mashinostroenie, 1980, 533 p.

  4. Altunin K.V., Gortyshov Yu.F., Galimov F.M. et al. Energetika Tatarstana, 2010, no. 2, pp. 10-17.

  5. Altunin K.V. Patent RU 2388966 C1, 10.05.2010.

  6. Altunin K.V. Patent RU 2447362 C1, 10.04.2012.

  7. Altunin K.V. Patent RU 2504676 C1, 20.01.2014.

  8. Krichevskii S.V. Metodika otsenki i puti povysheniya bezopasnosti poletov samoletov-istrebitelei na vzlete pri otkazakh aviatekhniki (A technique for assessment and ways of improvement of the flight safety of fighter aircraft on take-off at the aviation equipment failures), Moscow, VVA im. prof. N.E. Zhukovskogo i Yu.A. Gagarina, 2011, 364 p.

  9. Yanovskii L.S., Dmitrenko V.P., Dubovkin N.F. et al. Osnovy aviatsionnoi khimmotologii (Fundamentals of aviation chemmotology), Moscow, MATI, 2005, pp. 85-86.

  10. Udel’nyi impul’s, https://ru.wikipedia.org/wiki/Удельный_импульс

  11. Yanovskii L.S., Kharin A.A. Khimmotologicheskoe obespechenie nadezhnosti aviatsionnykh gazoturbinnykh dvigatelei (Chemmotological reliability ensuring of aviation gas turbine engines), Moscow, INFRA-M, 2015, 264 p.

  12. Myrabo L.N., Lewis J.S. Lightcraft Flight handbook. Canada, Apogee Books Space Series, 2009, 284 p.

  13. Ignat’ev A.B. Voprosy integratsii moshchnykh lazernykh istochnikov so sredstvami formirovaniya, orientirovaniya i tochnogo navedeniya lucha (Issues of high-power laser sources integration with the means of formation, orientation and precise beam guidance), Moscow, MIREA, 2008, 72 p.

  14. Rezunkov Yu.A. Izvestiya vysshikh uchebnykh zavedenii. Priborostroenie, 2011, vol. 54, no. 2, pp. 7-12.

  15. Kuz’michev V.S., Omar H.H., Tkachenko A.Yu. Effectiveness improving technique for gas turbine engines of ground application by heat regeneration. Aerospace MAI Journal, 2018, vol. 25, no. 4, pp. 133-141.

  16. 12 Most Powerful Aircraft Engines in the World, https://www.rankred.com/most-powerful-aircraft-engines/

  17. Patel V., Savsani V., Mudgal A. Efficiency, thrust, and fuel consumption optimization of a subsonic/sonicturbojet engine. Energy, 2018, vol. 144, pp. 992-1002. DOI: 10.1016/j.energy.2017.12.080

  18. Younossi O., Arena M.V., Moore R., Lorell M., Mason J., Graser J.C. Military jet engine acquisition: technology basics and cost-estimating methodology. United States, RAND, 2002, 174 p.

  19. El-Sayed A.F. Performance Parameters of Jet Engines. Fundamentals of Aircraft and Rocket Propulsion. 2016, pp. 161-218. DOI: 10.1007/978-1-4471-6796-9_3

  20. Semenov V.L., Aleksandrov V.Yu., Prokhorov A.N., Aref’ev K.Yu., Kruchkov S.V. Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie, 2019, no. 11(716), pp. 86–97. DOI: 10.18698/0536-1044-2019-11-86-97.

mai.ru — informational site of MAI

Copyright © 1994-2020 by MAI