Liquid rocket engines functional diagnostics system in real-time mode

Aeronautical and Space-Rocket Engineering

Control and testing of flying vehicles and their systems


Аuthors

Levochkin P. S.1, Martirosov D. S.2*, Kamenskii S. S.1**, Kozlov A. A.2***, Borovik I. N.2****, Belyaeva N. V.2*****, Rumyantsev D. S.3******

1. NPO Energomash named after academician V.P. Glushko, 1, Burdenko str., Khimki, 141400, Russia
2. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
3. V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, 65, Profsoyuznaya str., Moscow, 117997, Russia

*e-mail: mrtsv@mail.ru
**e-mail: sskam2009@yandex.ru
***e-mail: kozlov202@yandex.ru
****e-mail: borovik.igor@mai.ru
*****e-mail: anata.beliaeva@mail.ru
******e-mail: z2070@mail.ru

Abstract

The hardware-software complex of the functional diagnostics system of the liquid jet engines operation during fire tests was developed. The system analyzes data in the real time mode. It deals with troubleshooting of units, structural elements or loops of a liquid rocket engine and determines the time instant of their occurrence.

Theoretical studies of the processes occurring in a rocket engine have been conducted since the 1930s. Differential equations reflect the dependencies between the engine parameters. The developed system employs the linearized equations of dynamics allowing accelerate computing and obtain numerical results in the real-time mode.

Each engine and each of its units are described by mathematical equations, on which basis the parameters values are calculated.

At each stationary mode, the averaged values of the operating engine measured parameters computed employing a mathematical model are compared.

If a calculated value deviates from the actual one, then there is a considerable probability of a defect presence in a unit, or in the entire engine. Functional diagnostics is based on this principle.

Modern measuring systems and high-speed computing systems are employed to diagnose engines in real-time mode.

The system consists of a hardware-software complex, an information system and a database, a telemetry signal emulator and an operator’s automated workplace.

The LRE functional diagnostics system solves the following tasks:

1. Increases the safety of the LRE fire tests conducting;

2. Determines the the engine functioning correctness in all stationary modes specified by the test profile;

3. Detects and localizes the malfunctions disrupting the proper functioning;

4. Identifies the engine “weak points”, such as elements or loops prone to structural or manufacturing failures.

5. Confirms the engine reliability before prior to its employing as a part of the launch vehicle.

The results of the emergency protection system and functional diagnostics system operation were compared. The proposed system has always found a failure before the emergency protection system did.

References

  1. Langemak G.E., Glushko V.P. Rakety: ikh ustroistvo i primenenie (Missiles, their structure and application), Moscow - Leningrad, ONTI NKPT, Glavnaya redaktsiya aviatsionnoi literatury, 1935, 120 p.

  2. Glushko V.P. Raketnye dvigateli GDL – OKB (GDL- OKB rocket engines), Moscow, Novosti, 1975, 110 p.

  3. Vanichev A.P. Termodinamicheskii raschet goreniya i istecheniya v oblasti vysokikh temperature (Thermodynamic calculation of combustion and outflow at high temperatures), Moscow, Byuro novoi tekhniki, 1947, 29 p.

  4. Vengerskii E.V., Morozov V.A., Usov G.L. Gidrodinamika dvukhfaznykh potokov v sistemakh pitaniya energeticheskikh ustanovok (Hydrodynamics of two-phase flows in power plants power systems), Moscow, Mashinostroenie, 1983, 128 p.

  5. Vengerskii E.V., Morozov V.A., Usov G.L. Kavitatsionnye avtokolebaniya v nasosnykh sistemakh. Sbornik statei, Kiev, Naukova dumka, 1976. Part 2, pp. 86-93.

  6. Moshkin E.K. Dinamicheskie protsessy v ZhRD (Dynamic processes in LRE), Moscow, Mashinostroenie, 1964, 256 p.

  7. Natanzon M.S. Kavitatsionnye avtokolebaniya v nasosnykh sistemakh. Sbornik statei, Kiev, Naukova dumka, 1976. Part 2, pp. 3-12.

  8. Pilipenko V.V., Zadontsev V.A., Natanzon M.V. Kavitatsionnye avtokolebaniya i dinamika gidrosistem (Cavitation self-oscillations and hydraulic systems dynamics), Moscow, Mashinostroenie, 1977, 352 p.

  9. Ovsyannikov B.V. Teoriya i raschet nasosov zhidkostnykh raketnykh dvigatelei (Liquid rocket engines pumps theory and design), Moscow, Oborongiz, 1960, 247 p.

  10. Ovsyannikov B.V., Borovskii B.I. Teoriya i raschet agregatov pitaniya zhidkostnykh raketnykh dvigatelei (Theory and calculation of power units for liquid rocket engines), Moscow, Mashinostroenie, 1986, 376 p.

  11. Chebaevskii V.F., Petrov V.I. Kavitatsionnye kharakteristiki vysokooborotnykh shneko-tsentrobezhnykh nasosov (Cavitation characteristics of high-speed screw- centrifugal pumps), Moscow, Mashinostroenie, 1973, 152 p.

  12. Chebaevskii V.F., Petrov V.I. Kavitatsiya v vysokooborotnykh lopastnykh nasosakh (Cavitation in high-speed vane pumps), Moscow, Mashinostroenie, 1982, 192 p.

  13. Sherstyannikov V.A., Kalnin V.M. Gidrodinamicheskoe modelirovanie rabochego protsessa ZhRD na rezhimakh zapuska (Hydrodynamic modeling of the LRE workflow at launch modes), Moscow, Mashinostroenie, 1981, 88 p.

  14. Vasin A.S., Vengerskii E.V. Novye naukoemkie tekhnologii v tekhnike. Entsiklopediya, Moscow, Aspekt, 1994, vol. 1, 280 p.

  15. Bukanov V.T., Kolbasenkov A.I., Martirosov D.S. Trudy NPO “Energomash im. akademika V.P. Glushko”, 2012, no. 29, pp. 174-187.

  16. Kamenskii S.S., Martirosov D.S., Kolomentsev A.I. Similarity theory methods application for lpre steady- flow working procedures analysis. Aerospace MAI Journal, 2016, vol. 23, no. 1, pp. 32-37.

  17. Tirskii A.A. Razrabotka i issledovanie avtomatizirovannoi sistemy funktsional’nogo kontrolya i diagnostirovaniya ZhRD (Development and study of LRE automated functional control and diagnostics system). Doctor’s thesis, Moscow, MATI, 2001, 200 p.

  18. Meyer C.M., Zakrajsek J.F. Rocket engine failure detection using system identification techniques. NASA Contractor Report 185259. AIAA-90-1993, 18 p. DOI: 10.2514/6.1990-1993

  19. Levochkin P.S., Martirosov D.S., Bukanov V.T. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana, 2013, no. 1(90), pp. 72-88.

  20. Martirosov D.S. Diagnostirovanie slozhnykh tekhnicheskikh sistem na osnove matematicheskikh modelei i izmeryaemykh parametrov metodom strukturnogo isklyucheniya (Complex technical systems diagnostics based on mathematical models and measured parameters by the structural studying method), Moscow, MAI, 1998, 53 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI