Planets exploration with reusable takeoff and landing complexes

Aeronautical and Space-Rocket Engineering

Design, construction and manufacturing of flying vehicles


DOI: 10.34759/vst-2020-4-48-58

Аuthors

Saprykin O. A.

Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academу of Sciences (GEOHI RSA), 19, Kosygin str., Moscow, 119991, Russia

e-mail: oleg.sapr@gmail.com

Abstract

The article performs a comparative analysis of the known methods of the of the solar system planets exploring by automatic interplanetary stations (AMS). These are exploration by the flyby trajectories, from near-planet orbit, and planets exploration by the probes (stationary or mobile) with direct landing on the planet surface. The following conditions ensuring global planet exploration were selected as comparison criteria. They are contact studies (soil analysis, etc.); the possibility for visiting several regions of the planet; maximum routs length for detailed exploration of the planet; applicability while pioneer flights realization, and the possibility of reusable application of the one-type spacecraft for various space objects studying.

In the process of analysis, conclusion is being drawn that none of the applied methods solves scientific problems concurrently and comprehensively (on a global scale of the studied planet) and in detail (at the level of contact probes). It was proposed herewith to consider the fourth – practically unexplored method of research – by employing orbital refueling tankers (ORT) and reusable takeoff and landing complexes (RTLC). The article demonstrates the possibility of high-tech scenarios realization of scientific missions, combining both scales (such as exploration of several remote regions of the planet, or even several satellite planets near the giant planets) within the framework of a single mission, as well as contact studies (soil sampling, drilling, etc.). On the example of the flight to the giant planet system (Jupiter, Saturn, Uranus, Neptune) the author demonstrates the possibility of realizing scenario with multiple landing on the giant planet satellite, as well as with flight continuation to the next satellite of this planet, and its exploring with the same scenario. The RTLC fueling from the fueling tanker side (the ORT, besides the tanker function, performs the function of the scientific mission navigation and communication provision device), ensures the possibility of multiple contact and route studies on the planet (satellite) surface, which is yet impossible with conventional exploration techniques. The RTLC fueling from the fueling tanker side (the ORT, besides the tanker function, performs the function of the scientific mission navigation and communication provision device), ensures the possibility of multiple contact and route studies on the planet (satellite) surface, which is yet impossible with traditional exploration techniques.

Keywords:

reusable takeoff and landing complex, orbital refueling tanker, automatic interplanetary station, spacecraft, exploration method, local flight, jump, scientific tools set, route, interplanetary complex

References

  1. Sadchikov I.I., Chulcov S.A. Substantiation of rational flight multiplication factor of using rocket engines and glider in the system’s perspective reusable launch vehicles of payload in orbits. Aerospace MAI Journal, 2009, vol. 16, no. 6, pp. 164-170.

  2. Proshchai, Kassini! 2017. URL: https://severnymayak.ru/2017/09/12/proshhaj-kassini-istoriya-kosmicheskogo-puteshestviya-dlinoj-pochti-v-8-milliardov-kilometrov/

  3. Raketa-nositel’. Seriya RN Titan 4. URL: https://www.ecoruspace.me/Seriya+RN+Titan+4.html

  4. Spisok mezhplanetnykh kosmicheskikh apparatov. URL: https://ru.wikipedia.org/wiki/Spisok_mezhplanetnykh_kosmicheskikh_apparatov

  5. Dovgan’ V.G. Zemlya i Vselennaya, 2005, no. 2, pp. 76-81. URL: http://epizodsspace.airbase.ru/bibl/ziv/2005/2-lunohod.html

  6. Marsianskaya nauchnaya laboratoriya. URL: https://ru.wikipedia.org/wiki/Marsian

  7. Rodchenko V.V., Sadretdinova E.R., Gusev E.V. Choice of parametres of penetrator for research of a lunar ground. Aerospace MAI Journal, 2010, vol. 17, no. 3, pp. 83-90.

  8. Osnovnye polozheniya Federal’noi kosmicheskoi programmy 2016-2025. URL: https://www.roscosmos.ru/22347/

  9. Elkin K.S., Kushchev V.N., Manko A.S., Mikhailov V.M. Mars entry calculation for descent module of ExoMars project. Aerospace MAI Journal, 2014, vol. 21, no. 4, pp. 79-86.

  10. Venera-D. URL: https://ru.wikipedia.org/wiki/Венера-Д

  11. Lunnaya programma Rossii. URL: https://marstraktor.livejournal.com/195625.html

  12. Saprykin O., Baksheeva E., Safronov V., Tolstel O. About the possibility of use anthropomorphic manipulators and transport robotic systems to create the commercial system for energy, communications and logistics support on the Moon surface. 67th International Astronautical Congress IAC-2016 (Guadalajara, Mexico). Paper ID: 33865.

  13. Larichev O.I. Sbornik trudov Instituta sistemnogo analiza Rossiiskoi akademii nauk “Problemy sistemnogo analiza I upravleniya”, Moscow, Editorial URSS, 2001, pp. 57-91.

  14. Saati T. The Analytic Hierarchy Process. New York, McGraw-Hill, 1980.

  15. Keeney R.L., Raiffa H. Decisions with multiple objectives: preferences and value tradeoffs. New York, Cambridge University Press, 2008, 592 p.

  16. Konstantinov M.S., Min T. Optimal direct trajectories to the Jupiter with nuclear electric propulsion. Aerospace MAI Journal, 2013, vol. 20, no. 5, pp. 22-33.

  17. Vorontsov V.A. The study of the project problem situations in the development of the automatic space descent systems. Aerospace MAI Journal, 2010, vol. 17, no. 4, pp. 64-70.

  18. Saprykin O.A. Pilotiruemye polety v kosmos, 2014, no. 2(11), pp. 35-50.

  19. Landgraf M., Hosseini S., Hufenbach B. et al. HERACLES. Human/Robotic Lunar Partnership Mission. Follow-on Assessment (HR PM2). Monograph. ESA, CDF Study Report. CDF-156(A), 2015, 318 p.

  20. Konstantinov M.S., Orlov A.A. Optimization of low thrust trajectory to the jupiter flight with two gravity assists near the earth. Aerospace MAI Journal, 2014, vol. 21, no. 1, pp. 58-69.

  21. Konstantinov M.S. The analysis of use of Moon’s swingby for providing a vector of hyperbolic excess of velocity at flying away from the Earth. Aerospace MAI Journal, 2010, vol. 17, no. 3, pp. 68-77.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI