Working fluid mathematical model for the gas turbine engine thermo-gas-dynamic design

Aeronautical and Space-Rocket Engineering


DOI: 10.34759/vst-2021-4-180-191

Аuthors

Tkachenko A. Y.

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

e-mail: tau@ssau.ru

Abstract

The article presents the results of a study aimed at enhancing accuracy and computational efficiency of algorithms for working fluid thermodynamic properties and functions determining used for the gas turbine engine workflow computing.

The working fluid of an atmospheric gas turbine engine is a mixture of seven general individual components such as nitrogen, oxygen, water vapor, carbon dioxide, sulfur dioxide, argon and helium. Setting values of relative mass fractions of components allows calculate the working fluid parameters depending on the properties of the above-said components.

Expressions and corresponding coefficients for a mixture thermodynamic properties and functions computing were obtained based on the existing dependencies of the isobaric heat capacity on temperature for the above-listed components. A new thermodynamic function j was introduced, which allowed establishing a relationship between the total and critical temperatures of the working fluid, with account for its composition and variable heat capacity.

The expressions being presented allow replacing conventional isentropic functions based on the assumption of a constant heat capacity. Application of these new expressions for isentropic relationships between total, static and critical state parameters ensures higher adequacy and better reliability of a gas turbine engine thermodynamic model. This became possible since the isentropic functions are accounting for the dependence of properties on working fluid composition and temperature as well.

The developed approach for the working fluid properties numerical modeling allows creating the time-efficient algorithms for thermodynamic and gas-dynamic process simulation. It has a wide range of applications and scaling capability to create more complex working fluid models.

Keywords:

working fluid, gas turbine engine, mathematical modeling, thermodynamic properties of the working fluid, gas dynamic functions

References

  1. Akhmedzyanova A.M. (ed) Matematicheskie modeli aviatsionnykh dvigatelei proizvol’nykh skhem. Komp’yuternaya sreda DVIG (Mathematical models of aircraft engines of arbitrary schemes. The DVIG software). Ufa, UGATU, 1998, 128 p.
  2. Druzhinin L.N., Shvets L.I., Lanshin A.I. Trudy TsIAM, 1982, no. 832, 44 p.
  3. Dorofeev V.M., Maslov V.G., Pervyshin N.V. et al. Termogazodinamicheskii raschet gazoturbinnykh silovykh ustanovok (Thermo-gas-dynamic design of gas turbine power plants), Moscow, Mashinostroenie, 1973, 144 p.
  4. Il’ichev Ya.T. Trudy TsIAM, 1975, no. 677, 126 p.
  5. Agaverdyev S.V., Zinenkov Y.V., Lukovnikov A.V. Optimal parameters selection of the strike unmanned aerial vehicle power plant. Aerospace MAI Journal, 2020, vol. 27, no. 4, pp. 105-116. DOI: 10.34759/vst-2020-4-105-116
  6. Maslov V.G., Kuz’michev V.S., Grigor’ev V.A. Vybor parametrov i proektnyi termogazodinamicheskii raschet aviatsionnykh gazoturbinnykh dvigatelei (Parameters selection and design thermogasodynamic calculation of aircraft gas turbine engines), Kuibyshev, KuAI, 1984, 176 p.
  7. Zinenkov Y.V., Lukovnikov A.V., Cherkasov A.N. Estimation of the effectiveness of a power plant for a high-altitude unmanned aerial vehicle. Aerospace MAI Journal, 2015, vol. 22, no. 3, pp. 91-102.
  8. Dorofeev V.M. Termodinamicheskii raschet vozdushno-reaktivnykh dvigatelei s pomoshch’yu diagramm p, i-funktsii (Thermodynamic design of air-jet engines with π, i-functions diagrams), Kuibyshev, KuAI, 1968, 175 p.
  9. Rivkin S.L. Termodinamicheskie svoistva gazov (Thermodynamic properties of gases), Moscow, Energoatomizdat, 1987, 288 p.
  10. Druzhinin L.N., Shvets L.I., Malinina N.S. Algoritmy i podprogrammy rascheta termodinamicheskikh parametrov vozdukha i produktov sgoraniya uglevodorodnykh topliv v GTD. Tekhn. otchet 8787 (Algorithms and routines for thermodynamic parameters computing of air and combustion products of hydrocarbon fuels in the gas turbine engine. Tech. Report No. 8787). Moscow, TsIAM, 1979, 85 p.
  11. Gurvich L.V., Veits I.V., Medvedev V.A. et al. Termodinamicheskie svoistva individual’nykh veshchestv: Spravochnoe izdanie. V 4 t. (Thermodynamic properties of individual substances. Reference edition in four volumes). Moscow, Nauka. 1979-1982.
  12. Chase M.W. NIST-JANAF Thermochemical Tables: Monograph No.9. Journal of Physical and Chemical Reference Data. 4th Ed. 1998, 61 p.
  13. Bride B.J., Zehe M.J., Gordon S. NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species. Report NASA/TP2002211556. Glenn Research Center, Cleveland, Ohio, 2002. URL: 20020085330.pdf
  14. Visser W. Generic Analysis Methods for Gas Turbine Engine Performance: The development of the gas turbine simulation program GSP. PhD thesis. Technische Universiteit Delft, 2014. DOI: 10.4233/uuid:f95da308-e7ef-47de-abf2-aedbfa30cf63
  15. Bride B., Gordon S. Fortran IV program for calculation of thermodynamic data. NASA TN D-4097, 1967, 137 p. URL: https://ntrs.nasa.gov/api/citations/ 19670025863/downloads/19670025863.pdf
  16. Bride B., Gordon S. Computer program for calculating and fitting thermodynamic functions. NASA Reference Publication 1271, 1992, 94 p. URL: 19930003779.pdf
  17. Filinov E.P., Bezborodova K.V. Double bypass turbojet engine structure analysis. Aerospace MAI Journal, 2021, vol. 28, no. 3, pp. 159-170. DOI: 10.34759/vst-2021-2-159-170
  18. Filinov E.P., Avdeev S.V., Krasil’nikov S.A. Vestnik RGATU im. P.A. Solov’eva, 2018, no. 3(46), pp. 19-25.
  19. Tkachenko A.Yu., Rybakov V.N., Krupenich I.N. et al. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta, 2014, no. 5-3(47), pp. 113-119.
  20. Avdeev S.V., Tkachenko A.Yu. Vestnik Ufimskogo gosudarstvennogo aviatsionno-tekhnologicheskogo universiteta, 2020, vol. 24, no. 4(90), pp. 17-24.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI