Selection of rational parameters of distributed propulsion system in structure of the long range aircraft

Aeronautical and Space-Rocket Engineering


DOI: 10.34759/vst-2022-1-95-108

Аuthors

Kalenskii S. M.*, Morzeeva T. A.*, Ezrokhi Y. A.**, Pankov S. V.***

Central Institute of Aviation Motors named after P.I. Baranov, CIAM, 2, Aviamotornaya str., Moscow, 111116, Russia

*e-mail: 30105@ciam.ru
**e-mail: yaezrokhi@ciam.ru
***e-mail: pankov@ciam.ru

Abstract

In the paper the concept of the distributed power plant (DPP) is considered at its integration with the long range aircraft (LRA).

The given propulsion system consists of a turbine bypass engine (TBE) which turbine is connect with two taken out fan modules with the help of the mechanical transmission. The mechanical way of power transfer is the level of airplane 2030 and based on results of the researches CIAM of P.I. Baranov of new circuit designs.

As the advance design of the long range airplane with DPP is observed the aircraft type “hybrid flying wing”. Two distributed propulsion systems take place on the top of an aft tail of the plane.

The DPP parameters definition is the result of computer model of the given power plant system. According the calculation, the average cruise value of inlet total pressure recovery coefficient is about ~0,958.

In the paper is presented the adaptation of the computer model for distributed propulsion system to adapt for the process of multidisciplinary optimization.

For heightening efficiency of remote fan’s modules on different conditions of flight are examined controllable blades of these fans.

In view of the big magnitudes of total compression ratio of perspective DPP (≥50) core engine was considered the two-shaft scheme. TBE has the two-position nozzle of bypass duct for displacement of an operating point on performance of the fan to have near optimum of efficiency.

The component efficiency level of the DPP is defined on the base of the forecast of development of aircraft engines for perspective long range aircrafts of commercial aviation 2030 years.

The computer model of the DPP is developed using the block-structure and separate blocks created earlier in CIAM first level mathematical model of turbine engines.

Thus the block-structure of a bypass unmixed engine has been changed by accessing blocks of remote fans. The DPP compressor and turbine groups’ calculation is added by the corresponding equation of balance of fans and turbines powers.

In the paper the system of defining equations for DPP computer model of the design and off-design modes as aero thermodynamic characteristics is presented.

The description of computer model of estimated DPP turbo machinery weight and weights of gearboxes and transmission shafts is given.

The given adaptation of model provided possibility in an automatic regime to vary the basic data on settlement (cruiser) regime DPP. Also it provided the calculation of aero thermodynamic and ecological characteristics for further researches of LRA and DPP and receiving results in the necessary aspect.

With given computer model optimizing DPP for aircraft type “hybrid flying wing” researches has been conducted. Carried out researches have allowed to determine two alternative versions of the DPP providing smaller runway length (on 4 %) and the best parameters on issue СО2 not conceding base version on range of flight and expenses of fuel.

Keywords:

distributed power plant, fan module, variable blade angle fan, long haul aircraft

References

  1. Torg M.T., Jones S.M., Haller W.J., Handschuh R.F. Engine Conceptual Design Studies for a Hybrid Wing Body Aircraft. Prepared for the Turbo Expo 2009 sponsored by the American Society of Mechanical Engineers (08-12 June 2009; Orlando, Florida). NASA/TM-2009-215680. URL: https://core.ac.uk/download/pdf/10551681.pdf

  2. Greitzer E.M. Some aerodynamic problems of aircraft engines: fifty years after – The 2007 IGTI Scholar Lecture. Journal of Turbomachinery, 2009, vol. 131, no. 3. DOI: 10.1115/1.2992515

  3. Plas A.P., Sargeant M.A., Madani V., Crichton D., Greitzer E.M., Hynes T.P., Hall C.A. Performance of a Boundary Layer Ingesting (BLI) Propulsion System. 45th AIAA Aerospace Sciences Meeting and Exhibit (08-11 January 2007; Reno, Nevada). DOI: 10.2514/6.2007-450

  4. Bolsunovskii A.L., Buzoveriya N.P., Gurevich B.I. et al. Osobennosti kontseptsii passazhirskogo samoleta v skheme “Letayushchee krylo”. In Problemy sozdaniya perspektivnoi aviatsionno-kosmicheskoi tekhniki. Moscow, Fizmatlit, 2005, pp. 262-273.

  5. Lanshin A.I., Polev A.S. AviaSoyuz, 2013, no. 6, pp. 52-54.

  6. Lanshin A.I., Lukovnikov A.V., Polev A.S. et al. Materialy XII Mezhdunarodnogo salona (17-20 April 2012; Moscow) “Dvigateli-2012”, pp. 15-17.

  7. Kalenskii S.M., Morzeeva T.A., Ezrokhi Yu.A. Materialy Vserossiiskoi nauchno-tekhnicheskoi konferentsii (24-27 November 2015; Moscow) “Aviadvigateli XXI veka”, Moscow, TsIAM, 2015, pp. 59-61.

  8. Karasev D.A., Arutyunov A.G., Zagordan A.A. Development of cargo aircrafts with electric power plants. Aerospace MAI Journal, 2015, vol. 22, no. 1, pp. 132-139.

  9. Volokitina E.I., Vlasov A.I., Danilov N.A. et al. Elektronika i elektrooborudovanie transporta, 2010, vol. 4, pp. 2-7.

  10. Skibin V.A., Solonin V.I., Palkin V.A. Raboty vedushchikh aviadvigatelestroitel’nykh kompanii v obespechenie sozdaniya perspektivnykh aviatsionnykh dvigatelei <analiticheskii obzor> (Works of leading aircraft engine companies in ensuring the promising aircraft engines creation <analytical review>), Moscow, TsIAM, 2010, 672 p.

  11. Ezrokhi Y.A., Kalenskii S.M., Morzeeva T.A., Kizeev I.S. Distributed power-plant concept with gas drive of external fan module analysis. Aerospace MAI Journal, 2017, vol. 24, no. 2, pp. 31-41.

  12. Ezrokhi Y.A., Kalenskii S.M., Morzeeva T.A., Khoreva E.A. Accounting for the effect of the border layer at the inlet to the fans while integrating the distributed power plant and a flying vehicle. Aerospace MAI Journal, 2018, vol. 25, no 1, pp. 57-66.

  13. Gulyaev V.V., Zalyaev R.R., Ikryannikov E.D., Karpenko V.V., Smeler Yu.V. Nauchnyi vestnik MGTU GA, 2006, no. 97, pp. 22-26.

  14. Lukovnikov A.V., Polev A.S., Isyanov A.M. et al. Polet. Obshcherossiiskii nauchno-tekhnicheskii zhurnal, 2014, no. 6, pp. 29−34.

  15. Gordin M.V., Palkin V.A. Aviatsionnye dvigateli, 2019, no. 3(4), pp. 7-6. DOI: 10.54349/26586061_2019_3_7

  16. Kalenskii S.M., Morzeeva T.A, Ezrokhi Yu.A. Aviatsionnye dvigateli, 2019, no. 3(4), pp. 49-56. DOI: 10.54349/26586061_2019_3_49

  17. Ezrokhi Yu.A. Mashinostroenie. Entsiklopediya. T. IV-21 “Samolety i vertolety”. Kn.3 «Aviatsionnye dvigateli». Moscow, Mashinostroenie, 2010, pp. 341-353.

  18. Demenchenok V.P., Druzhinin L.N., Parkhomov A.L. et al. Teoriya dvukhkonturnykh turboreaktivnykh dvigatelei (Theory of two-bypass turbojet engines), Moscow, Mashinostroenie, 1979, 432 p.

  19. Kulagin V.V., Bochkarev S.K., Goryunov I.M. et al. Teoriya, raschet i proektirovanie aviatsionnykh dvigatelei i energeticheskikh ustanovok (Theory, calculation and design of aircraft engines and power plants), Moscow, Mashinostroenie, 2005. Book 3 – 464 p.

  20. Ezrokhi Y.A., Kalenskii S.M., Kizeev I.S. Double-flow turboprop with afterburner weight indices estimation at the initial stage of its design. Aerospace MAI Journal, 2017, vol. 24, no. 1, pp. 26-37.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI