On accounting for turbine efficiency, while gas turbine engine parameters determining

Aeronautical and Space-Rocket Engineering


DOI: 10.34759/vst-2022-2-77-87

Аuthors

Ezrokhi Y. A.*, Gusmanova A. A.**

Central Institute of Aviation Motors named after P.I. Baranov, CIAM, 2, Aviamotornaya str., Moscow, 111116, Russia

*e-mail: yaezrokhi@ciam.ru
**e-mail: 30105@ciam.ru

Abstract

Mathematical modeling of the aviation gas turbine engine (GTE) is one of the most important instruments, which is being employed at all stages of its life cycle. Foremost, it is being applied at the stages of engine design and its engineering follow-up

The efficiency of the engine mathematical model (EMM) application depends on the accuracy and adequacy of the working process description in an air-gas channel of the engine and its components. The accuracy of the basic engine components defining is an essential factor that determines the accuracy of the gas-turbine engine mathematical model. The engine gas turbine is one of such basic GTE components.

The firsts-level mathematical model of the engine the gas turbine represents a single-stage (one nozzle assembly and one impeller). The turbine performances are being represented as the dependence of the normalized gas consumption in the first nozzle assembly throat and efficiency on the turbine pressure ratio and reduced circular velocity value on the impeller average radius.

As is known, the efficiency reflects the difference between the real and ideal processes (without thermal losses, i.e. adiabatic expansion) in the engine turbine. In other words, it is the ratio of the power generated by the turbine to the turbine adiabatic power.

The article presents various options of the turbine efficiency determining, which differ each other by the accounting for the cooling air energy.

Analysis of the engine parameters impact on the difference between the efficiency value determined by the parameters in the nozzle throat and the efficiency value determined by the parameters in the gap between the nozzle and the impeller blades was performed. The article demonstrates that incorrect accounting for the efficiency while the aircraft GTE model computing may lead to significant errors in determining its parameters and performances.

Keywords:

aircraft gas turbine engine, parameters and performances, gas turbine efficiency, turbine cooling, nozzle block, impeller

References

  1. Ezrokhi Yu.A. Modelirovanie dvigatelya i ego uzlov. V Mashinostroenie: Entsiklopediya. T. IV-21. Samolety i vertolety. Kn. 3. Aviatsionnye dvigateli (Engine and its components modeling. In: Mashinostroenie: Encyclopedia. Vol. IV-21 «Airplanes and helicopters». Book 3 «Aircraft engines»), Moscow, Mashinostroenie, 2010, pp. 341-353.
  2. Tkachenko A.Yu. Working fluid mathematical model for the gas turbine engine thermo-gas-dynamic design. Aerospace MAI Journal, 2021, vol. 28, no. 4, pp. 180-191. DOI: 10.34759/vst-2021-4-180-191
  3. Visser W.P.J. Generic Analysis Methods for Gas Turbine Engine Performance: The development of the gas turbine simulation program GSP. PhD thesis. Technische Universiteit Delft, 2014, 289 p. DOI: 10.4233/uuid:f95da308-e7ef-47de-abf2-aedbfa30cf63
  4. Ezrokhi Y.A., Khoreva E.A. Estimation of inlet airflow non-uniformity effect on turbofan thrust. Aerospace MAI Journal, 2018, vol. 25, no. 2, pp. 99-108.
  5. Egorov I.N., Kretinin G.V., Leshchenko I.A. Optimal design and control of gas-turbine engine components: a multicriteria approach. Aircraft Engineering and Aerospace Technology, 1997, vol. 69, no. 6, pp. 518-526. DOI: 10.1108/00022669710185977
  6. Agaverdyev S.V., Zinenkov Y.V., Lukovnikov A.V. Optimal parameters selection of the strike unmanned aerial vehicle power plant. Aerospace MAI Journal, 2020, vol. 27, no. 4, pp. 105-116. DOI: 10.34759/vst-2020-4-105-116
  7. Filinov E.P., Bezborodova K.V. Double bypass turbojet engine structure analysis. Aerospace MAI Journal, 2021, vol. 28, no. 3, pp. 159-170. DOI: 10.34759/vst-2021-3-159-170
  8. Lukovnikov A.V. A conceptual design of aircraft propulsion systems in multidisciplinary statement. Aerospace MAI Journal, 2008, vol. 15, no. 3, pp. 34-43.
  9. Gol’berg F.D., Gurevich O.S., Petukhov A.A. Trudy MAI, 2012, no. 58. URL: http://trudymai.ru/eng/published.php?ID=33278
  10. Tskhovrebov M.M., Ezrokhi Yu.A., Drygin A.S. Aviatsionnye dvigateli i silovye ustanovki. Sbornik statei, Moscow, Torus Press, 2010, pp. 53–159.
  11. Ahmed H.S.A., Osipov B.M. Multimode identification to obtain an adequate gas turbine engine model for its diagnosing by thermal-gas dynamic parameters. Aerospace MAI Journal, 2020, vol. 27, no. 1, pp. 133-143. DOI: 10.34759/vst-2020-1-133-143
  12. Ezrokhi Yu.A., Khoreva E.A. Aerokosmicheskii nauchnyi zhurnal, 2017, no. 1, pp. 1-14. DOI: 10.24108/rdopt.0117.0000059
  13. Litvinov Yu.A., Borovik V.O. Kharakteristiki i ekspluatatsionnye svoistva aviatsionnykh turboreaktivnykh dvigatelei (Characteristics and operational properties of aviation turbojet engines), Moscow, Mashinostroenie, 1979, 288 p.
  14. Venediktov V.D. Gazodinamika okhlazhdaemykh turbin (Gas dynamics of cooled turbines), Moscow, Mashinostroenie, 1990, 240 p.
  15. Dvigateli gazoturbinnye aviatsionnye. Terminy i opredeleniya. GOST. 23851-79 (Aviation gas turbine engine. Terms and definitions, State Standard 23851-79), Moscow, Standarty, 1980, 99 p.
  16. Young J.B., Horlock J.H. Defining the efficiency of a cooled turbine. Journal of Turbomachinery, 2006, vol. 128, no. 4, pp. 658-667. DOI: 10.1115/1.2218890
  17. Solokhin E.L. Ispytaniya vozdushno-reaktivnykh dvigatelei (Tests of air-jet engines), Moscow, Mashinostroenie, 1992, 303 p.
  18. Rzhavin Yu.A., Emin O.H., Karasev B.H. Lopatochnye mashiny dvigatelei letatel’nykh mashin. Teoriya i raschet (Blade systems of aircraft engines. Theory and calculation), Moscow, MAI-PRINT, 2008, 700 p.
  19. Kurzke J. About Simplifications in Gas Turbine Performance Calculation. ASME Turbo Expo 2007: Power for Land, Sea and Air (14-17 May 2007; Montreal, Canada). GT2007-27620, pp. 493-501. DOI: 10.1115/GT2007-27620
  20. Dorofeev V.M., Maslov V.G., Pervyshin N.V. et al. Termogazodinamicheskii raschet gazoturbinnykh silovykh ustanovok (Thermogasodynamic calculation of gas turbine power plants), Moscow, Mashinostroenie, 1973, 144 p.
  21. Shlyakhtenko S.M. (ed.) Teoriya i raschet vozdushno-reaktivnykh dvigatelei (Theory and calculation of air-jet engines), Moscow, Mashinostroenie, 1987, 568 p.
  22. Dvigateli aviatsionnye gazoturbinnye. Metod i podprogrammy rascheta termodinamicheskikh parametrov vozdukha i produktov sgoraniya uglevodorodnykh topliv. Rukovodyashiy tekhnicheskiy material aviatsionnoy teckhniki RTM 1677-83 (Aicraft gas turbine engines. Methods and routines for air and hydrocarbon fuel combustion products thermodynamic parameters calculation. Guiding technical material of aviation technique, no. 1677-83), Moscow, TsIAM, 1983, 92 p.
  23. Filinov E.P., Kuz’michev V.S., Tkachenko A.Y., Ostapyuk Y.A. Determining required turbine cooling air flow rate at the conceptual design stage of gas turbine engine. Aerospace MAI Journal, 2021, vol. 28, no. 1, pp. 61-73. DOI: 10.34759/vst-2021-1-61-73
  24. Jiang C., Chen H.-P. Study on approximate calculation of cooling air allocation for gas turbine. Asia-pacific Power and Energy Engineering Conference (27-31 March 2009; Wuhan, China). DOI: 10.1109/APPEEC.2009.4918801
  25. Horlock J.H., Watson D.T., Jones T.V. Limitations on gas turbine performance imposed by large turbine cooling flows. Journal of Engineering for Gas Turbines and Power, 2001, vol. 123, no. 3, pp. 487-494. DOI: 10.1115/1.1373398
  26. Holland M.J., Thake T.F. Rotor blade cooling in high pressure turbines. Journal of Aircraft, 1980, vol. 17, no. 6, pp. 412-418. DOI: 10.2514/3.44668
  27. Torbidoni L., Horlock J.H. A new method to calculate the coolant requirements of a high-temperature gas turbine blade. Journal of Turbomachinery, 2005, vol. 127, no. 1, pp. 191-199. DOI: 10.1115/1.1811100

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI