Burner design impact on the flame tube walls temperature state

Aeronautical and Space-Rocket Engineering


DOI: 10.34759/vst-2022-3-136-142

Аuthors

Baklanov A. V.

Kazan National Research Technical University named after A.N. Tupolev, 10, Karl Marks str., Kazan, 420111, Russia

e-mail: andreybaklanov@bk.ru

Abstract

The presented article recounts the results of the studies on the flame tube walls temperature determining of the gas turbine engine (GTE) running on the gaseous fuel.

The flame tube walls cooling is one of the essential components of the processes organizing in the GTE combustion chamber. The combustion chamber operation reliability and the engine lifetime in the aggregate are fully dependent on the effective cooling of the flame tube walls. One of the most widespread cooling systems is convective-film one, consisting in the air film forming, which does not allow the heated gas interact with metal and removes the heat from the opposite side of the wall due to the convection.

The article presents the description of the test bench equipment. It considers thee options of burners that differ by the nozzle attachment design, the geometry of the swirler and atomizer herewith remains unchanged. The results of fire tests studies of three burners with various nozzle attachments are presented. Comparison of the flame structure of the two burners was made.

The article presents the combustion chamber design of converted aircraft gas turbine engine, meant for the supercharger drive of the gas-pumping unit. Dissection of the combustion chamber walls in its various cross-sections was performed, and combustion chamber testing as a part of gas turbine engine was conducted.

Temperature of the walls at the modes being considered does not exceed 800°C, which is indicative of the ample flame tube cooling.

Based on the results of the work being conducted, the inferences were drawn on the most acceptable option of the burner for implementation with the engine.

Keywords:

combustion chamber, diffusion combustion, burner, combustion chamber wall temperature

References

  1. Gritsenko E.A., Danil’chenko V.P., Lukachev S.V. et al. Nekotorye voprosy proektirovaniya aviatsionnykh gazoturbinnykh dvigatelei (Some issues of aircraft gas turbine engines designing), Samara, SNTs RAN, 2002, 527 p.

  2. Lefebvre A.H., Ballal D.R. Gas Turbine Combustion: Alternative Fuels and Emissions. 3rd edition. CRC Press, 2010, 557 p.

  3. Markushin A.N., Baklanov A.V. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie, 2016, vol. 15, no. 3, pp. 81-89. DOI: 10.18287/2541-7533-2016-15-3-81-89

  4. Gritsenko E.A., Danil’chenko V.P., Lukachev S.V., Reznik V.E., Tsybizov Yu.I. Konvertirovanie aviatsionnykh GTD v gazoturbinnye ustanovki nazemnogo primeneniya (Converting aviation gas turbine engines into ground-based gas turbine installations), Samara, SNTs RAN, 2004, 266 p.

  5. Baklanov A.V. Burner geometry impact on gas turbine engine combustion chamber characteristics. Aerospace MAI Journal, 2021, vol. 28, no 1, pp. 86-95. DOI: 10.34759/vst-2021-1-86-95

  6. Mingazov B.G. Kamery sgoraniya gazoturbinnykh dvigatelei: konstruktsiya, modelirovanie protsessov i raschet (Gas turbine engines combustion chambers: design, modeling of processes and calculation), Kazan, Kazanskii gos. tekhnicheskii universitet, 2006, 219 p.

  7. Baklanov A.V. Controlling fuel combustion process by burner design change in gas turbine engine combustion chamber. Aerospace MAI Journal, 2018, vol. 25, no 2, pp. 73-85.

  8. Richerson D.W. Ceramics for Turbine Engines. Mechanical Engineering, 1997, vol. 119, no. 9, pp. 80–83.

  9. Baklanov A.V. Experimental study of the flame tube temperature state of a gas turbine engine multi-nozzle combustion chamber. Aerospace MAI Journal, 2019, vol. 26, no 2, pp. 116-125.

  10. Gritsch M., Schulz Α., Wittig S. Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes with Expanded Exits. Journal of Turbomachinery, 1998, vol. 120, no. 3, pp. 549-556. DOI: 10.1115/1.2841752

  11. Burrus D.L., Charour C.Α., Foltz H.L. at al. Energy Efficient Engine Combustor Test Hardware Detailed Design Report. NASA CR-168301, 1984, 497 p. URL: https://ntrs.nasa.gov/api/citations/19900019238/downloads/19900019238.pdf

  12. Rosen R., Facey J.R. Civil Propulsion Technology for the Next Twenty-Five Years. Eighth International Symposium on Air Breathing Engines (14-19 June 1987, Cincinnati, Ohio). Paper No. 87-7000.

  13. Dodds W.J., Ekstedt E.E. Broad Specification Fuel Combustion Technology Program. Phase 2. NASA-CR-168179, 1984. URL: https://ntrs.nasa.gov/api/citations/19840007215/downloads/19840007215.pdf

  14. Lefebvre A.H. Influence of Fuel Properties on Gas Turbine Combustion Performance. AFWAL-TR-84-2104, 1985.

  15. Dodds W.J., Bahr D.W, Combustion System Design. In: Mellor A.M. (ed.) Design of Modern Gas Turbine Combustors. New York, Academic Press, 1990, pp. 343–476.

  16. Il’inkov A.V., Gabdrakhmanov R.R., Takmovtsev V.V., Shchukin A.V. Effect of centrifugal mass forces on heat transfer when airflow of concave surface with transverse projections. Aerospace MAI Journal, 2018, vol. 25, no. 1, pp. 39-48.

  17. Isaev S.A., Schelchkov A.V., Leontiev A.I. et al. Numerical simulation of the turbulent air flow in the narrow channel with a heated wall and a spherical dimple placed on it for vortex heat transfer enhancement depending on the dimple depth. International Journal of Heat and Mass Transfer, 2016, vol. 94, pp. 426-448. DOI: 10.1016/j.ijheatmasstransfer.2015.11.002

  18. Ahn J., Choi H., Lee J.S. Large Eddy Simulation of Flow and Heat Transfer in a Channel Roughened by Square or Semicircle Ribs. Journal of Turbomachinery, 2005, vol. 127, no. 2, pp. 263-269. DOI: 10.1115/1.1811098

  19. Mochizuki S., Kiml R., Murata A. Heat Transfer Enhancement Mechanism in Rectangular Channels with V- and A shaped Ribs. Transactions of the Japan Society of Mechanical Engineers Series B, 1999, vol. 65, no. 631, pp. 1032-1039. DOI: 10.1299/kikaib.65.1032

  20. Dutta P., Cowell L.H., Yee D.K., Dalla Betta R.Α. Design and Evaluation of a Single-Can Full Scale Catalytic Combustion System for Ultra-Low Emissions Industrial Gas Turbines. Turbo Expo: Power for Land, Sea, and Air. ASME Paper No. 97-GT-292, 1997. DOI: 10.1115/97-GT-292

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI