Computational studies on the air intake of the power plant mounted in the mainline aircraft wing root

Aeronautical and Space-Rocket Engineering


Аuthors

Novogorodtsev E. V.*, Kazhan V. G.**, Koltok N. G.***, Chanov M. N.****

Central Aerohydrodynamic Institute named after N.E. Zhukovsky (TsAGI), 1, Zhukovsky str., Zhukovsky, Moscow Region, 140180, Russia

*e-mail: novogorodtseve91@mail.ru
**e-mail: v.kazhan@tsagi.ru
***e-mail: nikitakoltok@gmail.com
****e-mail: arzmax@bk.run

Abstract

The article deals with the computational study of flow-around and characteristics of the air intake of a power plant mounted in the mainline aircraft wing root. Mathematical model of the air intake in the mainline aircraft layout was designed. A modified option of the air intake was designed as the result of the performed studies, in which, unlike the basic option, the following arrangements were realized. They are placing the lining-spreader in the area of the junction of the wing and the fuselage; reprofiling of the air intake duct edges and outlines; accomplishing the “tooth”-shaped ledge in the lower air intake edge.

Air intake flow-around numerical simulation was performed based on Reynolds-averaged Navier-Stokes equations with SST-turbulence model solution (RANS-SST approach) employing unstructured computational grids built in the flow areas outside and inside the air intake. Air intake duct throttling was performed using the active disk method.

As the result of the performed studies the air intake throttle characteristics were obtained, namely dependencies of the total pressure recovery coefficient v and the circumferential flow distortion parameter Δ¯δ on the specific reduced air flow through the engine q(λeng). The article adduces the M number fields in both vertical longitudinal and horizontal longitudinal sections of the air intake duct, as well as fields of the v coefficient in the cross-section of the duct corresponding to the engine compressor inlet.

Analysis of the results of the computational study of the wing-mounted air intake flow and performance showed that in the cruising flight mode the modified air intake option considerably outperforms the baseline air intake one. Thus, the modified wing-mounted air intake variant ensures higher ν coefficient value, and lower Δ¯δ0  parameter values compared to the baseline wing-mounted air intake option. It was established that in the cruising flight mode, the modified air intake option performance was similar to the performance of air intakes in the classical layout of the main aircraft with engine nacelles located under the wing. It was revealed that application of the “tooth-shaped” ledge on the air intake lower edge allowed improve significantly the air intake performance in the takeoff and landing flight modes in terms of the total pressure distortion at the engine inlet cross section due to the of the separated flow restructuring in the air intake. Unlike the baseline air intake option, the air intake option with a “tooth-shaped” ledge allowed ensuring the gas-dynamic stability of the power plant in the takeoff and landing flight modes.

Keywords:

mainline aircraft air intake flow-around numerical simulation, power plant mounted in aircraft wing root, total pressure recovery coefficient, throttle characteristic of air intake, total pressure circumferential distortion parameter at the engine inlet, turbofan engine

References

  1. Skvortsov E.B., Biryuk V.I., Gurevich B.I. et al. Materialy Vserossiiskoi nauchno-tekhnicheskoi konferentsii “Aviadvigateli XXI veka” (24-27 November 2015; Moscow). Moscow, TsIAM, 2015, pp. 168-170.

  2. Bondarev A.V., Kamenetskii B.S., Skvortsov E.B. et al. Materialy Semnadtsatoi Mezhdunarodnoi shkoly-seminara “Modeli i metody aerodinamiki” (04–11 June 2017; Evpatoriya). Zhukovskii, TsAGI, 2017, pp. 153-154.

  3. Bondarev A.V., Kamenetskii B.S., Skvortsov E.B. et al. Materialy Vosemnadtsatoi Mezhdunarodnoi shkoly-seminara “Modeli i metody aerodinamiki” (04–11 June 2018; Evpatoriya). Zhukovskii, TsAGI, 2018, pp. 31-32.

  4. Bragin N.N., Buzoverya N.P., Skvortsov E.B., Skomorokhov S.I. Materialy XXVI nauchno-tekhnicheskoi konferentsii po aerodinamike (26-27 February 2015; Zhukovskii). Zhukovskii, TsAGI, 2015, p. 59.

  5. Biryuk V.I., Buzoverya N.P., Gurevich B.I. et al. Materialy XXVII nauchno-tekhnicheskoi konferentsii po aerodinamike (21–22 April 2016; Zhukovskii). Zhukovskii, TsAGI, 2016, pp. 47-48.

  6. Bolsunovskii A.L., Bondarev A.V., Gurevich B.I., Skvortsov E.B., Chanov M.N., Shalashov V.V., Shelekhova A.S. Development and analysis of civil aircraft concepts employing integration principles. Aerospace MAI Journal, 2018, vol. 25, no. 4, pp. 49-63. 3.

  7. Chanov M.N., Skvortsov E.B., Shelekhova A.S. et al. Technical concepts analysis of transport aircraft with various power plant types and layout. Aerospace MAI Journal, 2020, vol. 27, no. 4, pp. 30-47. DOI: 10.34759/vst-2020-4-30-47

  8. Imaev T.F., Chelombit’ko A.V., Bondarev A.V. et al. Materialy Mezhdunarodnogo foruma Dvigatelestroeniya. Nauchno-tekhnicheskogo kongressa po dvigatelestroeniyu (4–6 April 2018). Moscow, Vash uspekh, 2018, vol. 1.

  9. Lukovnikov A.V., Polev A.S., Isyanov A.M. et al. Polet. Obshcherossiiskii nauchno-tekhnicheskii zhurnal, 2014, no. 6, pp. 29-34.

  10. Anisimov K.S., Efimov R.A., Ivanyushkin A.K. et al. Materialy Mezhotraslevoi nauchno-tekhnicheskoi konferentsii “Sovremennye problemy aerogazodinamiki silovykh ustanovok letatel’nykh apparatov” (21–22 October 2021; Zhukovskii). Zhukovskii, TsAGI, 2021, pp. 11-12.

  11. Novogorodtsev E.V., Bondarev A.V., Ivanyushkin A.K. et al. Materialy Mezhotraslevoi nauchno-tekhnicheskoi konferentsii “Sovremennye problemy aerogazodinamiki silovykh ustanovok letatel’nykh apparatov” (21–22 October 2021; Zhukovskii). Zhukovskii, TsAGI, 2021, pp. 72-73.

  12. Skvortsov E.B., Bondarev A.V., Lukovnikov A.V. et al. Polet. Obshcherossiiskii nauchno-tekhnicheskii zhurnal, 2022, no. 11-12, pp. 14-28.

  13. Talyzin V.A., ChanovM.N., Lavrukhin G.N., Skvortsov E.B. Materialy Mezhotraslevoi nauchno-tekhnicheskoi konferentsii “Sovremennye problemy aerogazodinamiki silovykh ustanovok letatel’nykh apparatov” (21–22 October 2021; Zhukovskii). Zhukovskii, TsAGI, 2021, pp. 80-82.

  14. Talyzin V.A., Chanov M.N., Lavrukhin G.N. et al. Materialy Dvadtsat’ pervoi Mezhdunarodnoi shkoly-seminara “Modeli i metody aerodinamiki” (04-11 June 2021; Evpatoriya). Zhukovskii, TsAGI, 2021, pp. 126.

  15. Talyzin V.A., Chanov M.N., Lavrukhin G.N. et al. Uchenye zapiski TsAGI, 2020, vol. 51, no. 3, pp. 49-59.

  16. Bondarev A.V., Vedernikov D.V., Kazhan V.G. et al. Patent RU 2777129 C1, 01.08.2022.

  17. Abramovich G.N. Prikladnaya gazovaya dinamika (Applied gas dynamics), 4th ed. Moscow, Nauka, 1976, 888 p.

  18. Garbaruk A.V., Strelets M.Kh., Shur M.L. Modelirovanie turbulentnosti v raschetakh slozhnykh techenii (Turbulence modeling in calculations of complex flows), St. Petersburg, Politekhnicheskogii universiteta, 2012, 88 p.

  19. Reinol’ds O. Dinamicheskaya teoriya dvizheniya neszhimaemoi vyazkoi zhidkosti i opredelenie kriteriya. IN: O. Reinol’ds. Problemy turbulentnosti: Sbornik statei. Moscow – Leningrad, ONTI, 1936, pp. 135-227.

  20. Menter F.R. Zonal two equation k-ω turbulence models for aerodynamic flows. 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference (06-09 July 1993; Orlando, FL, USA). DOI: 10.2514/6.1993-2906

  21. Pirogov S.Y., Yuriev A.S., Tipayev V.V., Makhrov A.S. A numerical stream simulation for external-compression inlet with energy supply into incoming supersonic flow . Aerospace MAI Journal, 2009, vol. 16, no. 3, pp. 154-159.

  22. Gilyazev D.I., Ivanyushkin A.K., Kazhan A.V. et al. Materialy XXIX nauchno-tekhnicheskoi konferentsii (01–02 March 2018; d. Bogdanikha). Zhukovskii, TsAGI, 2018, p. 97.

  23. Karpov E.V., Novogorodtsev E.V. Materialy XXVIII nauchno-tekhnicheskoi konferentsii po aerodinamike (20-21 April 2017; p. Volodarskogo). Zhukovskii, TsAGI, 2017, pp. 139-140.

  24. Novogorodtsev E.V., Karpov E.V., Koltok N.G. Characteristics improvement of spatial fixed-geometry air intakes of external compression based on boundary layer control systems application. Aerospace MAI Journal, 2021, vol. 28, no. 4, pp. 7-27. DOI: 10.34759/vst-2021-4-7-27

  25. Byushgens G.S. (ed.) Aerodinamika i dinamika poleta magistral’nykh samoletov (Aerodynamics and flight dynamics of mainline aircraft), Moscow – Pekin, TsAGI, Avia-izdatel’stvo KNR, 1995, 772 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI