An approach to the aircraft propeller mathematical modeling

Aeronautical and Space-Rocket Engineering


Аuthors

Zinenkov Y. V.1*, Fedotov M. M.1**, Raznoschikov V. V.2***, Lukovnikov A. V.2****

1. Air force academy named after professor N.E. Zhukovskii and Y.A. Gagarin, Voronezh, Russia
2. Central Institute of Aviation Motors named after P.I. Baranov, CIAM, 2, Aviamotornaya str., Moscow, 111116, Russia

*e-mail: yura2105@mail.ru
**e-mail: m38@mail.ru
***e-mail: raznoschikov@ciam.ru
****e-mail: avlukovnikov@ciam.ru

Abstract

There is an intensive development of unmanned and regional aviation in our country. This causes the need for additional study of airplane air propellers employed as the main propulsors of aircraft propulsion systems. When efficiency evaluating of such propulsion systems as part of an aircraft, it is necessary to have current values of thrust during the entire flight. As a rule, these values can be obtained by methods of mathematical modeling using computers. Presently, there is no mathematical model that ensures thrust computing of a propeller-driven propulsion system in a single software package for aircraft efficiency assessment. To eliminate this contradiction, the authors created a mathematical model of a four-bladed aircraft propeller and integrated it into the general algorithm of the “Calculation of thrust-economic and specific-mass characteristics of the propulsion system and aircraft motion parameters” program.

The developed mathematical model considers the air propeller as a device for converting the power on the shaft of the marshaling aircraft engine into the thrust of the aircraft propulsion system required for its movement. This model is based on experimental characteristics obtained from the results of the AV-68 propeller tests in a wind tunnel. Its purpose consists in computing current values of the propeller aerodynamic parameters at each time instant, necessary to compute the aircraft propulsion system thrust during the entire flight. Power and thrust factors, blade installation angle, speed coefficient and efficiency are being used the propeller aerodynamic parameters.

The ranges of flight conditions for which the thrust of the propeller propulsion system is being computed in the mathematical model are as follows: from 0 to 12 km in terms of flight altitude, and from 0 to 0.4 in terms of Mach number. The current thrust values of the propulsion system are automatically computed in the above-appointed

ranges with a single input of initial data and transferred to the mathematical model of the aircraft flight dynamics. To substantiate the necessary input data to the mathematical model, the main parameters and characteristics of serial air propellers used as a part of aircraft propulsion systems were analyzed. As the result, such parameters are flight altitude, flight speed, power at the engine output shaft, propeller diameter, engine shaft speed and transmission

ratio of the propeller gearbox.

Analysis of the qualitative flow of the current characteristics of the propeller computed in the course of this work demonstrates that it does not contradict the theoretical description. This proves that the developed mathematical model of the four-bladed airplane propeller produces an adequate result, which accuracy will be evaluated in the future by verification.

As the result, development of the above-said propeller mathematical model ensured enhancing of efficiency and fidelity of computational-theoretical studies on forming preliminary technical layout of power plants by the criteria of the airplane-type aerial vehicle.

Practical value of the presented work, which consists in the fact that its outcome may be employed in both scientific institutions and design bureaus dealing with prospective unmanned aerial vehicles and power plants for them, employed in ordering organizations and industry while substantiating the requirements for new models of aviation equipment, should be noted as well.

Keywords:

thrust factor, power factor, speed factor, blade pitch angle, relative advance of a propeller, propeller diameter, propeller experimental characteristics, AV-68, turbofan, Horner method

References

  1. Kravets A.S. Kharakteristiki vozdushnykh vintov (Characteristics of air screw), Moscow, Oborongiz, 1941, 264 p.

  2. Aleksandrov V.L. Vozdushnye vinty (Air screw), Moscow, Oborongiz, 1951, 447 p.

  3. Yur’ev B.N. Izbrannye trudy. V 2 t. T. 1. Vozdushnye vinty. Vertolety (Selected works. In 2 vols. Vol. 1. Air screw. Helicopters), Moscow, Akademiya nauk SSSR, 1961, 551 p.

  4. Bill Y. Attack of the Drones. A History of Unmanned Aerial Combat. Zinith Press / MBI Publishing Company, 2004, 127 p.

  5. Austin R. Unmanned Aircraft Systems UAVS design, development and deployment. John Wiley & Sons Ltd., 2010, 332 p.

  6. Bludov A. Fomin A. Vzlet, 2020, no. 9-10 (189-190), pp. 50-55.

  7. Levshonkov N.V. Metodika proektirovochnogo rascheta i ratsional’nyi vybor parametrov vozdushnogo vinta pri razrabotke mnogorezhimnykh letatel’nykh apparatov (Method of design calculation and rational choice of propeller parameters in the development of multi-mode aircraft), Ph.D. thesis, Kazan, Kazanskii tekhn. universitet im. A.N. Tupoleva, 2005, 107 p.

  8. Shaidakov V.I. Aerodinamika vinta v kol’tse (Aerodynamics of the screw in the ring), Moscow, MAI, 1996, 88 p.

  9. Golovin V.M., Filippov G.V., Shakhov V.G. Raschet polyar i podbor vinta k samoletu (Calculation of polars and selection of propeller to the aircraft), Samara, SGAU im. S.P. Koroleva, 1992, 68 p.

  10. Arep’ev A.N. Voprosy proektirovaniya legkikh samoletov. Analiz proektnogo resheniya (Light aircraft design issues. Design Analysis), Moscow, MGTU GA, 2000, 123 p.

  11. Vershinin I.D., Zelenko N.A., Kishalov A.N. Uchebnye zapiski TsAGI, 2008, vol. 39, no. 1-2, pp. 81-86.

  12. Arep’ev A.N. Vybor proektnykh parametrov i otsenka letnykh kharakteristik passazhirskikh samoletov s turbovintovymi dvigatelyami (Selection of design parameters and evaluation of flight characteristics of passenger aircraft with turboprop engines), Moscow, MAI, 2005, 96 p.

  13. Ostroukhov S.P. Aerodinamika vozdushnykh vintov i vintokol’tsevykh dvizhitelei (Aerodynamics of air screw and ring propellers), Moscow, Fizmalit, 2014, 328 p.

  14. Gerasimov O.V., Kritskii B.S. Nauchnyi Vestnik MGTU GA, 2014, no. 200, pp. 79-85.

  15. Lysenkov A.V., Pavlik S.V. Trudy MFTI, 2013, vol. 5, no. 3, pp. 174-186.

  16. Zinenkov Y.V., Lukovnikov A.V. The concept of pluridisciplinary forming of precursory technical appearance of military purpose unmanned aerial vehicles. Aerospace MAI Journal, 2022, vol. 29, no. 3, pp. 94-110. DOI: 10.34759/vst-2022-3-94-110

  17. Zinenkov Yu.V., Lukovnikov A.V., Fedorov R.M. Svidetel’stvo o gosudarstvennoi registratsii programm dlya EVM “Raschet tyagovo-ekonomicheskikh i udel’no-massovykh kharakteristik silovoi ustanovki i parametrov dvizheniya letatel’nogo apparata” RU 2015662803, 20.12.2015 (Certificate of state registration of computer programs “Calculation of traction-economic and specific mass characteristics of the power plant and parameters of the movement of the aircraft”, no. RU 2015662803, 20.12.2015).

  18. Korovin A.E., Novikov Yu.F. Prakticheskaya aerodinamika samoletov Yak-52 i Yak-55 (Practical aerodynamics of Yak-52 and Yak-55 aircraft), Moscow, DOSAAF SSSR, 1989, 357 p.

  19. Ryabov N.K. Yusha N.F. Prakticheskaya aerodinamika samoleta AN-28 (Practical aerodynamics of the AN-28 aircraft), Moscow, Transport, 1992, 191 p.

  20. Bogoslovskii L.E. Prakticheskaya aerodinamika samoleta AN-24 (Practical aerodynamics of the AN-24 aircraft), Moscow, Transport, 1972, 200 p.

  21. Varukha I.M., Bychkov V.D., Smolenskii V.L. Prakticheskaya aerodinamika samoleta AN-12 (Practical aerodynamics of the AN-12 aircraft), Moscow, Transport, 1971, 180 p.

  22. Samolet mestnykh vozdushnykh linii An-38. Elektronnyi spravochnik AviaPort. 2013. URL: https://www.aviaport.ru/directory/aviation/an38/

  23. IOSO Approksimatsiya 1.0. Rukovodstvo pol’zovatelya. URL: http://iosotech.com/Documents/Ru/ru-IOSO-App_User_Guide.pdf

  24. Gupta R.K. Numerical Methods: Fundamentals and Applications. Cambridge University Press, 2019, 824 р.

  25. Amosov A.A., Dubinskii Yu.A., Kopchenova N.V. Vychislitel’nye metody (Computational methods), 4th ed. St. Petersburg, Lan’, 2014, 672 p.

  26. Zubekhin A.A, Borodavchenko D.I., Agisheva D.K. et al. Mezhdunarodnyi studencheskii nauchnyi vestnik, 2016, no. 3. Part 3, p. 413. https://s.eduherald.ru/pdf/2016/3-3/15045.pdf

  27. Polovko A.M., Butusov P.N. Metody i komp’yuternye tekhnologii ikh realizatsii (Methods and computer technologies of their implementation), St. Petersburg, BHV- Petersburg, 2004, 320 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI