Thrust control valve effect assessment on the liquid propellant rocket engine operation

Aeronautical and Space-Rocket Engineering


Аuthors

Burtsev I. V.

NPO Energomash named after academician V.P. Glushko, 1, Burdenko str., Khimki, 141400, Russia

e-mail: burtseviv37@gmail.com

Abstract

The subject of the study is a liquid propellant rocket engine (LRE) with the generator gas afterburning. The purpose of the study consists in determining the flow regulator characteristics effect on the LRE stability.

The article presents the description of the flow regulator operation, consisting of a throttle and stabilizing parts.

The author defined the main specifics while the flow regulator functioning, and noted that with the change in the pressure drop on the regulator a delay in the movement of the stabilizer spool is possible due to the friction forces between the movable elements of the stabilizing part of the regulator.

The external view of the loading curve in the presence of a delay in the movement of the flow regulator stabilizer spool is described, and the main parameters characterizing the loading curve specifics are highlighted

Computations of the LRE parameters changes in the cases of various flow regulator loading curves were conducted. Evaluation of the flow rate through the regulator change transient impact on the generator gas temperature and turbo-pump unit shaft rotation speed of the LRE being considered fluctuations was performed.

The author proposed the description of the self-oscillations origination mechanism in the LRE paths at the abrupt change of the pressure drop on the flow regulator in the case of the various types of loading curve of the flow regulator.

The article demonstrates the loading curves specifics effect on the of self-oscillations parameters.

Assumptions were made on the self-oscillations frequency effect depending on the engine operating mode, since the residence time of the components in the gas generator changes.

A sequence of changes in the parameters of the components in the paths of the liquid propellant supply units at an abrupt change in the pressure drop on the regulator has been compiled.

Keywords:

iquid propellant rocket engine operation stability along the line of flow control valve (TCV), components self-oscillation in the paths of the LRE feed units, TCV operation with the stabilizer operation delay, TCV loading characteristic with substantial nonlinearities, friction in the TCV elements

References

  1. Kamenskii S.S., Martirosov D.S., Kolomentsev A.I. Similarity theory methods application for lpre steady-flow working procedures analysis. Aerospace MAI Journal, 2016, vol. 23, no. 1, pp. 32-37.

  2. Casiano M., Hulka J., YangV. Liquid-propellant rocket engine throttling: A comprehensive review. 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (02-05 August 2009; Denver, Colorado). DOI: 10.2514/6.2009-5135

  3. Huzel D.K., Huang D.H. Design of liquid propellant rocket engines. NASA SP-125, 1967. Washington, D.C., 469 p. URL: https://ntrs.nasa.gov/api/citations/19710019929/downloads/19710019929.pdf

  4. Yao Z., Qi Y., Bao W., Zang T. Thrust Control Method and Technology of Variable-Thrust Liquid Engine for Reusable Launch Rocket. Aerospace, 2023, vol. 10, no. 1: 32. DOI: 10.3390/aerospace10010032

  5. Belyaev E.N., Kolomentsev A.I., Nasimento L.B., Nazarov V.P. Vestnik SibGAU,. 2014, no. 1(53), pp. 109-113.

  6. Gimadiev A.G. Vybor parametrov, raschet staticheskikh i dinamicheskikh kharakteristik regulyatora raskhoda topliva (Parameters selection, static and dynamic characteristics calculation of flow regulator), Samara, SGAU, 2007, 63 p.

  7. Zakharov N.D. Dinamika nasosnykh system. Sbornik nauchnykh trudov (Dynamics of pumping systems. Collection of scientific papers). Kiev, Naukova dumka, 1980, pp. 14-21.

  8. Glikman B.F. Avtomaticheskoe regulirovanie zhidkostnykh raketnykh dvigatelei (Automatic control of liquid rocket engines). 2nd ed. Moscow, Mashinostroenie, 1989, 296 p.

  9. Babkin A.I, Belov S.I., Rutovskii N.B., Solov’ev E.V. Osnovy teorii avtomaticheskogo upravleniya raketnymi dvigatel’nymi ustanovkami (Fundamentals of the theory of automatic control of rocket propulsion systems). 2nd ed. Moscow, Mashinostroenie, 1986, 452 p.

  10. Il’in M.M., Kolesnikov K.S., Saratov Yu.S. Teoriya kolebanii (Vibration theory). 2nd ed. Moscow, MGTU im. N.E. Baumana, 2003, 272 p.

  11. Aung K.M., Kolomentsev A.I., Martirosov D.S. Mathematical modelling of liquid rocket engine flow regulator in frequency and time domains. Aerospace MAI Journal, 2021, vol. 28, no. 1, pp. 96-106. DOI: 10.34759/vst-2021-1-96-106

  12. Burtsev I.V. Trudy NPO Energomash im. akademika V.P. Glushko, 2022, no. S38-39. pp. 111-123.

  13. Belyaev E.N., Chvanov V.K., Chervakov V.V. Matematicheskoe modelirovanie rabochego protsessa zhidkostnykh raketnykh dvigatelei (Mathematical modelling of liquid rocket engines working process), Moscow, MAI, 1999, 224 p.

  14. Burtsev I.V., Levochkin P.S., Martirosov D.S., Shil’nov M.A. Trudy NPO Energomash im. akademika V.P. Glushko, 2022, no. S38-39, pp. 103-110.

  15. Gimadiev A.G. Avtomatika i regulirovanie dvigatel’nykh ustanovok raketnykh i kosmicheskikh system (Automatics and regulation of propulsion systems of rocket and space systems), Samara, SGAU, 2010, 201 p.

  16. Gimadiev A.G., Bystrov N.D., Safin A.I. Raschet regulyatora raskhoda komponenta topliva ZhRD (Calculation of the flow regulator of the liquid propellant component), Samara, Samarskogo universiteta, 2020, 72 p.

  17. Zenin E.S., Men’shikova O.M., Fedotchev V.A. Polet. Obshcherossiiskii nauchno-tekhnicheskii zhurnal, 2013, no. 5, pp. 20-24.

  18. Lebedinskii E.V., Zaitsev B.V., Sobolev A.A. Mnogourovnevoe matematicheskoe modelirovanie regulyatora raskhoda dlya ZhRD (Multilevel mathematical modeling of the flow regulator for LRE). 2011. URL: http://www.kerc.msk.ru/ipg/papers/model2.pdf

  19. Koshelev I.M., MartirosovD.S., Kolbasenkov A.I. Dvigatel’, 2012, no. 6(84), pp. 24-27. URL: http://engine.aviaport.ru/issues/84/pics/pg24.pdf

  20. Ovsyannikov B.V. Borovskii B.I. Teoriya i raschet agregatov pitaniya zhidkostnykh raketnykh dvigatelei (Theory and calculation of power units for liquid-propellant rocket engines). 3rd ed. Moscow, Mashinostroenie, 1986, 344 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI