Low-thrust rocket engine with internal boundary cooling combustion chamber thermal state analysis

Aeronautical and Space-Rocket Engineering

Thermal engines, electric propulsion and power plants for flying vehicles


Аuthors

Vorob'eva S. S.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

e-mail: Kinder-Svetiks@yandex.ru

Abstract

The paper considers the issue of low-thrust liquid engine powered by nitrogen tetroxide and dimethyl hydrazine components non-symmetrical dimethyl hydrazine thermal state theoretical study with account for boundary cooling. The goal of the paper consists in analyzing the results of combustion chamber wall thermal state computation at various operating modes, such as steady-state continuous mode with stationary and non-stationary thermal field, as well as steady-state pulse mode.

Liquid rocket engine MAI-200-1 developed in the laboratory of MAI “Liquid rocket thrusters” and undergone fire tes sel ected as a subject of research.

For thermal state computation, the authors used mathematical model based on the proposition of combustion chamber wall incoming and outgoing heat flows equality. To solve non-stationary heat problem the differential Fourier-Kirchhoff heat equation in cylindrical coordinates in the case of stationary environment and the absence of internal heat sources is used. Pulse mode of the engine operation is modeled by a quasi-steady approach when non-stationary modes during engine starting and voiding are replaced by the set of stationary modes with intermediate parameters.

Oxidizer and fuel were considered as boundary cooling components to protect the combustion chamber walls fr om hot combustion products impact.

Computation results prove selection of fuel as boundary cooling component with relative boundary mass-flow rate not less than 20%. Under these engine operating conditions it will allow sustaining the wall temperature within the limits of maximum permissible temperature for ХН60ВТ material.

The combustion chamber wall thermal state for pulse operating mode with various on-time and off-time values, such as on-time of 1 s, off-time of 1 s and on-time of 0.05 s, off-time of 0.05 s were analyzed.

Presented computation results may be interesting for specialists working in the field of liquid-propellant thrusters, as well as for specialists occupied with spacecraft propulsion systems design.

Keywords:

low-thrust liquid rocket engine, combustion chamber thermal state, combustion chamber wall boundary cooling, thruster pulse mode, thruster nonstationary thermal state, thruster stationary thermal state

References

  1. Bezmenova N.V. Chislennoe modelirovanie sopryazhennogo teploobmena v ZhRD malykh tyag v tselyakh povysheniya ikh effektivnosti (Computational modeling of conjugated heat transfer of small thrust LRE for efficiency increasing), Samara, Samarskii gosudarstvennyi aerokosmicheskii universitet, 2001, 201 p.

  2. Berezanskaya E.L., Kurpatenkov V.D., Nadezhdina Yu.D. Raschet konvektivnykh teplovykh potokov v sople Lavalya (Calculation of convective heat flow in Laval nozzle), Moscow, MAI, 1976, 77 p.

  3. Vasil'ev A.P., Kudryavtsev V.M., Kuznetsov V.A. Osnovy teorii i rascheta zhidkostnykh raketnykh dvigatelei (Liquid rocket engines theory and design basics. Textbook for universities), Moscow, Vysshaya Shkola, 1975, 656 p.

  4. Vorob'ev A.G. Eksperimental'no-teoreticheskaya model teplovogosostoyaniya kamery sgoraniya dvukhkomponentnykh zhidkostnykh raketnykh dvigatelei malykh tyag, rabotayushchikh na nepreryvnom rezhime (Thermal state experimental and theoretical model of two-component low-thrust liquid rocket engines, operating in continuous mode, combustion chamber), Moscow, MAI, 2010, 169 p.

  5. Vorob'ev A.G. Vestnik Moskovskogo aviatsionnogo instituta, 2007, vol. 14, № 4, pp. 42-49.

  6. Egorychev V.S., Sulinov A.V. Zhidkostnye raketnye dvigateli maloi tyagi i ikh kharakteristiki (Liquid rocket thrusters and their characteristics), Samara, Samarskii gosudarstvennyi aerokosmicheskii universitet, 2010, www.twirpx.com/file/1689272 (accessed 22.06.16).

  7. Kokorin V.V., Rutovskii N.B., Solov'ev E.V. Kompleksnaya optimizatsiya dvigatel'nykh ustanovok sistemu upravleniya (Complex optimization of control system engine units), Moscow, Mashinostroenie, 1983, 184 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI