Superconducting electric motor with stator ring winding

Electrical Engineering

Electromechanics and electric apparatus


Аuthors

Gabrelyan A. S.*, Ivanov N. S.**, Kondrashov D. A., Korenchuk K. Y.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: artgab21@gmail.com
**e-mail: n.s.ivanov88@gmail.ru

Abstract

One of the promising trend of modern transportation systems development is transition to electric propulsion. This is topical for aircraft industry too. However, to solve this problem it is necessary to design electric motors with high power density over 20 kW/kg. To achieve such figures of the specific power is possible only using cryogenic cooling, and modern superconducting materials.

Design of the electric motors with superconducting inductor and armature windings, will allow obtain maximum benefits in terms of weight and size. This relates to the possibility of increasing the magnetic induction value in the motor air gap, as well as with the stator linear load increase.

Design a fully superconducting electric motors is complicated by the absence of any universal computation methods, as well as a number of design features and the critical parameters of high temperature superconducting tapes nonlinearity. All this requires the development of new computation methods for such kind electric motors.

The paper presents a fully superconducting electric motor with a ring armature winding and the method of determining the its specific power and the results of finite element modeling in three-dimensional formulation.

The obtained analytical expression for the main magnetic flux allows derive an equation for the power density of HTS machines with annular armature winding. It is shown, that this power may exceed the value of 20 kW/kg.

Keywords:

transportation transition to electric propulsion, high-temperature superconductors (HTS) for electric transport systems, armature ring winding, improved weight and size figures of HTS motors and generators

References

  1. Tarkhov S.A. Evolyutsionnaya morfologiya transportnykh setei (Evolutionary morphology of transportation networks), Smolensk, Universum, 2006, 386 p.

  2. Witte M. Impacts of Electric Vehicles, 2011, available at: http://www.ec.europa.eu/

  3. Shcherbakov V. Sverkhprovodniki dlya elektroenergetiki, 2007, vol. 4, no. 1, available at: http://perst.isssph.kiae.ru/supercond/bulletein.php?id=98&menu=bull_subj

  4. But D.A. Beskontaktnye elektricheskie mashiny (Brushless motors), Moscow, Vysshaya shkola, 1990, 416 p.

  5. Glebov I.A., Danilevich Ya.B., Shakhtarin V.N. Turbogeneratory s ispol'zovaniem sverkhprovodimosti (Turbine generators using superconductivity), Leningrad, Nauka, 1981, 231 p.

  6. Jun Z., Feng X., Wei C., Yijun D., Jin C. and Wenbin T. The Study and Test for 1MW High Temperature Superconducting Motor. IEEE/CSC & ESAS European Superconductivity News Forum, 2012, no. 22, pp. 6 – 9.

  7. Dezhin D., Ilyasov R., Kozub S., Kovalev K. and Verzhbitsky L. Synchronous motor with HTS-2G wires. Journal of Physics: Conference Series, 2014, vol. 507, no. 3, p. 32011.

  8. Kovalev K., Kovalev L., Poltavets V., Samsonovich S., Ilyasov R., Levin A. and Surin M. Synchronous Generator with HTS-2G field coils for Windmills with output power 1 MW. Journal of Physics: Conference Series, 2014, vol. 507, no. 3, p. 32023.

  9. Luongo C.A., Masson P.J., Nam T., Mavris D., Kim H.D., Brown G.V., Waters M. and Hall D.W. Next Generation More-Electric-Aircraft: A Potential Application for HTS Superconductors. IEEE Transactions on Applied Superconductivity, 2009, vol. 19, no. 3, part 2, pp. 1055 – 1068.

  10. Qu R., Liu Y. and Wang J. Review of Superconducting Generator Topologies for Direct-Drive Wind Turbines. IEEE Transactions on Applied Superconductivity, 2013, vol. 23, no. 3, pp. 1 – 6.

  11. Wang J., Qu R. and Liu Y. Comparison Study of Superconducting Generators with Multiphase Armature Windings for Large-scale Direct-drive Wind Turbines. IEEE Transactions on Applied Superconductivity, 2013, vol. 23, no. 3, pp. 1 – 5.

  12. Fleshler S., DeMoranville K., Gannon J., Li X., Podtburg E., Rupich M.W., Sathyamurthy S., Thieme C.L.H., Tucker D. and Whitman L. Development Status of AMSC Amperium ® Wire. Journal of Physics Conference Series, 2014, vol. 507, no. 2, p. 22005.

  13. Kozub L., Bogdanov S., Dezhin I., Kashtanov D., Kovalev E., Shuvalov K., Smirnov V., Sytnik V., Shcherbakov V., Tkachenko P. HTS racetrack coils for electrical machines. Proceedings of Cryogenics, 2014, pp. 283 – 287.

  14. Penkin V.T. Sverkhprovodnikovyi sinkhronnyi generator dlya avtonomnoi energeticheskoi ustanovki letatel'nogo apparata (Superconducting synchronous generator for aircraft autonomous power plant), Doctors thesis, Moscow, MAI, 1990, 233 p.

  15. Postnikov I.M. Proektirovanie elektricheskikh mashin (Electric motors design), Kiev, Gosudarstvennoe izd-vo tekhnicheskoi literatury USSR, 1960, 910 p.

  16. But D.A. Osnovy elektromekhaniki (Electromechanics basics), Moscow, МАИ, 1996, 365 p.

  17. Kovalev K.L., Dezhin D.S., Ivanov N.S. Vestnik Rybinskoi gosudarstvennoi aviatsionnoi tekhnologicheskoi akademii im. P.A. Solov'eva, 2015, no. 4(35), pp. 9 – 16.

  18. SuperOks. Sverkhprovodnik v budushchee, available at: http://www.superox.ru/products/973-vtspprovod/

  19.  Li G., Liu H., WangY.-S. and Zhang H. Frequency-Dependence and Anisotropy of AC Losses of Bi2223/Ag and YBCO-Coated Conductors. IEEE Transactions on Applied Superconductivity, 2016, vol. 26, no. 4, available at: http:/ieeexplore.org/document/7399394/

  20. Strategic Research & Innovation Agenda (SRIA). Materials of Advisory Council for Aviation Research and Innovation in Europe (ACARE) – SRA 1 (2002), SRA 2 (2004) and an Addendum to SRA 2 (2008).

  21. American Superconductor (AMSC), available at: http://www.amsc.com/

  22. Zhuravlev S.V., Zechikhin B.S., Kuz'michev R.V. Vestnik Moskovskogo aviatsionnogo instituta, 2016, vol. 23, no. 1, pp. 197 – 209.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI