Nanocomposite materials based on metallic nanoparticles and thermoplastic polymer matrices: production and properties

Metallurgy and Material Science

Material science


Аuthors

Bychkov A. N.1*, Fetisov G. P.1**, Kydralieva K. A.1***, Sokolov E. A.2****, Dzhardimalieva G. I.3*****

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. Branch of Talrose Institute of Energetic Problems of Chemical Physics Russian Academy of Sciences, 1, Academician Semenov av., Chernogolovka, Moscow region, 142432, Russia
3. Institute of Problems of Chemical Physics of the Russian Academy of Sciences, IPCP RAS, 1, Academician Semenov av., Chernogolovka, Moscow region, 142432, Russia

*e-mail: bnm.90@mail.ru
**e-mail: fetisov901@mail.ru
***e-mail: k_kamila@mai.ru
****e-mail: sokolov@binep.ac.ru
*****e-mail: dzhardim@icp.ac.ru

Abstract

A line of composite materials based on low-density linear polyethylene (LDPE) thermoplastic matrices, polypropylene (PP) and metallic nanoparticles was produced by mixing in polymer melt. The results of dynamic mechanical analysis of PP based composites with metallic nanoparticles, namely the product of Co (II) acrylamide nitrate complex and 2% FeCoAAm co-crystallizatant thermolysis, within the temperature range from −50 °C to +150 °C revealed, that low concentration of nano-filler (1 wt.%) does not lead to noticeable changes in dynamic elastic modulus, nano-composite mechanical losses and loss tangent. Thermooxidative degradation results indicated the increase of thermostability for above said PP-based composites compared to the initial PP at 4 and 8 wt.% of nanoparticles.

The authors obtained nanocomposite materials based on polyolefin matrix and pre-synthesized by chemical co-deposition magnetite nanoparticles such as LDPE-Fe3O4 and PP-Fe3O4. According to X-ray diffraction analysis, the major component in the system was magnetite nanoparticles with an average size of 15 nm. These results correspond to scanning electron microscopy data. The paper demonstrates that with the increase of nanoparticles content in polymer, and with magnetite high content in particular, the elastic modulus increases, and the tensile strength value decreases. Thermal behavior analysis in the PP-Fe3O4 (at 4 wt.%) system indicates that nanocomposite thermo-oxidative degradation reduced compared to the initial polypropylene, and the temperature of maximum degradation start-up increases from 300°C to 385°C.

Composite materials based on LDPE and Al65Cu22Fe13 with alloy (0.1 to 10 wt.%) were produced. The paper demonstrates that the presence of quasi-crystalline alloy as a filler leads to composites strength properties improvement. Unlike LDPE-Fe3O4 systems, a tensile strength of LDPE-Al65Cu22Fe13 increases with low filler concentrations.

Protective action of the nanocomposite systems under test in relation to beta-radiation was studied using dose metering method. It was demonstrated that with filler content increase in LDPE-Al65Cu22Fe13 and LDPE-Fe3O4 composites beta-radiation flux attenuation occurs. A high correlation between the portion of passing beta-radiation and relative dielectric constant of composite materials based on thermoplastic polymer matrix with metal-filler was observed.

Keywords:

metallic nanoparticles, nanocomposite materials, thermolysis, radiation protection properties, dielectric properties

References

  1. Pomogailo A.D., Rozenberg A.S., Uflyand I.E. Nanochastitsy metallov v polimerakh (Metals' nanoparticles in polymers), Moscow, Khimiya, 2000, 672 p.

  2. Donnet J.B. Nano-and microcomposites of polymers elastomers and their reinforcement. Composites Science and Technology, 2003, vol. 63, no. 8, pp. 1085 – 1088.

  3. Pomogailo A.D., Dzhardimalieva G.I. Metallopolimernye gibridnye nanokompozity (Metal-polymer hybrid nanocomposites), Moscow, Nauka, 2015, 494 p.

  4. Ramesh G.V., Porel S., Radhakrishnan T.P. Polymer thin films embedded with in situ grown metal nanoparticles. Chemical Society Reviews, 2009, vol. 38, pp. 2646 – 2656.

  5. Mbhele Z.H., Salemane M.G., van Sittert C.G.C.E., Nedeljkovic’ J.M., Djokovic’ V., Luyt A.S. Fabrication and characterization of silver-polyvinyl alcohol nanocomposites. Chemistry of Materials, 2003, vol. 15, pp. 5019 – 5024.

  6. Mendoza C., Pietsch T., Gutmann J.S., Jehnichen D., Gindy N., Fahmi A. Block copolymers with gold nanoparticles: correlation between structural characteristics and mechanical properties. Macromolecules, 2009, vol. 42, no. 4, pp. 1203 – 1211.

  7. Pomogailo D.A., Spirin M.G., Dzhardimalieva G.I., Skobeeva V.M., Smyntyna V.A. Vestnik Moskovskogo aviatsionnogo instituta, 2015, vol. 22, no. 2, pp. 170 – 177.

  8. Kruenate J., Tongpool R., Panyathanmaporn T. Optical and mechanical properties of polypropylene modified by metal oxides. Surface and Interface Analysis, 2004, vol. 36, pp. 1044 – 1047.

  9. Wang Z., Wang X., Zhang Z. Nucleating activation and spherical crystals morphology of LLDPE/LDPE/TiO2 nano composites prepared by non-isothermal crystallization. Journal of Dispersion Science and Technology, 2009, vol. 30, pp. 1231 – 1236.

  10. Pomogailo D.A., Fetisov G.P., Koksharov S.A., Pomogailo S.I., Kydralieva K.A. Tekhnologiya metallov, 2015, no. 9, pp. 36 – 41.

  11. Ding P., Qu B. Synthesis of exfoliated PP/LDH nanocomposites via melt-intercalation: structure, thermal properties, and photo-oxidative behavior in comparison with PP/MMT nanocomposites. Polymer engineering and science, 2006, vol. 46, no. 9, pp. 1153 –1159.

  12. Ji Y., Li B., Ge S., Sokolov J.C., Rafailovich M.H. Structure and nanomechanical characterization of electrospun PS/clay nanocomposite fibers. Langmuir, 2006, vol. 22. no. 3, pp. 1321-1328.

  13. Costantino U., Gallipoli A., Nocchetti M., Camino G., Bellucci F., Frache A. New nano-composites constituted of Polyethylene and organocally modified ZnAl-hydrotalcites. Polymer degradation and stability, 2005, vol. 90, no.3, pp. 586-590.

  14. Ciardelli F., Coiai S., Passaglia E., Pucci A., Rugg G. Nanocomposites based on polyolefins and functional thermoplastic materials. Polymer international, 2008, vol. 57, no. 6, pp. 805-836.

  15. Lewis T.J. Interfaces are the dominant feature of dielectrics at the nanometric level. IEEE transactions on dielectrics and electrical insulation, 2004, vol. 11, no. 5, pp. 739-753.

  16. Roy M., Nelson J.K., Mac Crone R.K., Schadler L.S., Reed C.W., Keefe R., Zenger W. Polymer nanocomposite dielectrics — The role of the interface. IEEE transactions on dielectrics and electrical insulation, 2005, vol. 12, no. 4, pp. 629-643.

  17. Tanaka T., Kozako M., Fuse N., Ohki Y. Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE transactions on dielectrics and electrical insulation, 2005, vol. 12, no. 4, pp. 669-681.

  18. Huang X., Kim C., Jiang P., Yin Y., Li Z. Influence of aluminum nanoparticle surface treatment on the electrical properties of polyethylene composites. Journal of Applied Physics, 2009, vol. 105, no.1, pp. 104-105.

  19. Karyakin Yu.V., Angelov I.I. Chistye khimicheskie veshchestva (Pure chemicals), Moscow, Khimiya, 1974, 407 p.

  20. Pomogailo A.D., Dzhardimalieva G.I. Vysokomolekulyarnye soedineniya. Seriya A, 2004, vol. 46, no. 3, pp. 437-453.

  21. Plastmassy. Metod ispytaniya na pastyazhenie. GOST 11262-80 (Plastic. Test method tensile, State Standart 11262-80), Moscow, Standarty, 1986, 16 p.

  22. Qin H., Zhang S., Zhao C., Hu G., Yang M. Flame retardant mechanism of polymer/clay nanocomposites based on polypropylene. Polymer, 2005, vol. 46, no.19, pp. 8386-8395.

  23. Modesti M., Lorenzetti A., Bon D., Besco S. Thermal behavior of compatibilized polypropylene nanocomposite: effect of processing conditions. Polymer Degradation and Stability, 2006, vol. 91, pp. 672-680.

  24. Zanetti M., Bracco P., Coste L. Thermal degradation behavior of PE/clay nanocomposites. Polymer degradation and stability, 2004, vol. 85, no.1, pp. 657-665.

  25. Dzhardimalieva G.I., Pomogailo A.D., Golubeva N.D., Pomogailo S.I., Roshchupkina O.S., Novikov G.F., Rozenberg A.S., Leonowicz M. Kolloidnyi zhurnal, 2011, vol. 73, no. 4, pp. 457-465.

  26. Sowka E., Leonowicz M., Andrzejew ski B., Pomogailo A.D., Dzhardimalieva G.I. Processing and properties of composite magnetic powders containing Co nanoparticles in polymeric matrix. Journal of Alloys and Compounds, 2006, vol. 423, pp. 123-127.

  27. Bloom P.D., Baikerikar K.G., Anderegg J.W., Sheares V.V. Fabrication and wear resistance of AlCuFe quasicrystal-epoxy composite materials. Materials Science and Engineering: A, 2003, vol. 360, no. 1-2, pp. 46-57.

  28. Kaloshkin S.D., Tcherdyntsev V.V., Danilov V.D. Preparation of Al-Cu-Fe quasicrystalline powdered alloys and related materials by mechanical activation. Crystallography Reports, 2007, vol. 52, no. 6, pp. 953- 965.

  29. Schwartz C.J., Bahadur S., Mallapragada S.K. Effect of crosslinking and PtZr quasicrystal fillers on the mechanical properties and wear resistance of UHMWPE for use in artificial joints. Wear, 2007, vol. 263, pp. 1072–1080.

  30. Novikov L.S., Mileev V.N., Voronina E.N., Galanina L.I. Makletsov A.A., Sinolits V.V. Poverkhnost. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya, 2011, no. 3, pp. 32-48.

  31. Golovin Yu.I., Dmitrievskii A.A., Pushnin I.A., Suchkova N.Yu. Fizika tverdogo tela, 2004, vol. 46, no. 10, pp. 1790-1792.

  32. Dmitrievskii A.A., Efremova N.Yu., Shuklinov A.V. Poverkhnost. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya, 2011, no. 4, pp. 63–64.

  33. Bychkov A.N., Dzhardimalieva G.I., Fetisov G.P., Valskii V.V., Golubeva N.D., Pomogailo A.D. Tekhnologiya metallov, 2015, no. 11, pp. 2-9.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI