Updating parametric gas turbine engine model with free turbine for helicopters

Aeronautical and Space-Rocket Engineering

Thermal engines, electric propulsion and power plants for flying vehicles


Аuthors

Grigor'ev V. A.*, Zagrebel'nyi A. O.**, Kalabuhov D. S.***

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

*e-mail: grigva47@gmail.com
**e-mail: zao_sam156@mail.ru
***e-mail: dskalabuhov@gmail.com

Abstract

A priori estimation of an aircraft engine mass takes on an important role while its creation, especially at the initial designing stage, when conceptual basics of the engine are being established. At this stage, when the design working out of the engine is not done yet, its weight estimation together with fuel economy indicators allows making valid selection of the engine working process parameters values. The presented work refines the parametric model of a gas turbine engine with the free turbine (GTE FT), used in the problem of the helicopter engine working process parameters optimization at the conceptual design stage. With this, while performing parametric studies the design mass of the power plant should be estimated according to the GTE parameters, though, up to now these dependencies are not studied quite well. Thus, the estimation of the engine mass dependencies on its parameters is being performed at present based on the generalized statistic data on the already accomplished structures or parametric mass models, since there is no more precise information at this stage. In fairness, it should be noted that they are all related to the aircraft engines. A rather smaller number of works is oriented of the mass estimation of the helicopter GTE FT. This is primarily due to the fact, that these engines belong to the class of the small-size and have thereupon a number of specifics.

At the same time, as new versions of gas turbine engines appear the periodical refinement the parametric model coefficients values is required. he article considers the mass model of the gas turbine engine with free turbine for several options for the reduction gear mass accounting for, namely, both as a part of the engine, and the power plant. The authors suggest representing the coefficients used in the above said GTE FT models in the form of dependencies on the working process parameters. It allowed perform parametric studies and obtain predictive solutions corresponding to the achieved current design level of gas turbine engines.

Keywords:

gas turbine engine with free turbine; mathematical model; reduction gear; conceptual designing

References

  1. Torenbeek E. Synthesis of Subsonic Airplane Design. Delft, Delft University Press, 1976, 598 p.

  2. Raymer D.P. Aircraft Design: A Conceptual Approach. Washington, American Institute of Aeronautics and Astronautics, 1992, 745 p.

  3. Pera R.J., Onat E., Klees G.W., Tjonneland E. A method to estimate weight and dimensions of aircraft gas turbine engines. National Aeronautics and Space Administration (NASA) Lewis Research Center, May 1977, 47 p.

  4. Svoboda C. Turbofan Engine Database as a Preliminary Design Tool. Aircraft Design, 2000, vol. 3, no. 3, pp. 17-31. DOI: 10.1016/S1369-8869(99)00021-X

  5. Onat E., Klees G.W. A Method of estimate weight and dimensions of large and small gas turbine engines. National Aeronautics and Space Administration (NASA) -Lewis Research Center. January 1979, 132 p.

  6. Guha A., Boylan D., Gallagher P. Determination of Optimum Specific Thrust for Civil Aero Gas Turbine Engines: a Multidisciplinary Design Synthesis and Optimization, Proc IMechE Part G. Journal Aerospace Engineering, 2012, vol. 227, no. 3, pp. 502 - 527. DOI: 10.1177/0954410011435623

  7. Akhmetov Yu.M., Akhmedzyanov D.A., Mikhailova A.B., Mikhailov A.E. Vestnik UGATU, 2013, vol. 17, no. 3(56), pp. 78- 86.

  8. Filinov E.P., Avdeev S.V., Krasil’nikov S.A. Correlation-regressive model for small-sized aircraft gas turbine engines mass computation. Aerospace MAI Journal, 2018, vol. 25, no. 3, pp. 73-81.

  9. Ezrokhi Yu.A., Kalenskii S.M., Kizeev I.S. Double­flow turboprop with afterburner weight indices estimation at the initial stage of its design. Aerospace MAI Journal, 2017, vol. 24, no. 1, pp. 26-37.

  10. Bakulev V.I., Kravchenko I.V. Aerospace MAI Journal, 1997, vol. 4, no. 1, pp. 20–24.

  11. Grigor’ev V.A., Zrelov V.A., Ignatkin Yu.M. et al. Vertoletnye gazoturbinnye (Helicopter gas turbine engines), Moscow, Mashinostroenie, 2007, 491 p.

  12. Kuz’michev V.S., Maslov V.G. Materialy V Vsesoyuznoi mezhotraslevoi nauchno-tekhnicheskoi konferentsii po mikroenergetike “Voprosy proektirovaniya i dovodki malorazmernykh GTD i ikh elementov”, Kuibyshev, KAI, 1975, pp. 29-37.

  13. Sorkin L.I. (eds) Inostrannye aviatsionnye dvigateli (Foreign-made aircraft engines). Issue 11, Moscow, TsIAM, 1987, 319 p.

  14. Sorkin L.I. (eds) Inostrannye aviatsionnye dvigateli (Foreign–made aircraft engines). Issue 13, Moscow, TsIAM, 1992, 286 p.

  15. Sorkin L.I. (eds) Inostrannye aviatsionnye dvigateli. Issue 13, Moscow, Aviamir, 2000, 534 p.

  16. Skibin V.A., Solonin V.I. (eds) Inostrannye aviatsionnye dvigateli: spravochnik TsIAM (Foreign-made aircraft engines: CIAM handbook), Moscow, Aviamir, 2005, 592 p.

  17. Klimenko L.A., Fokin Yu.V., Chikina K.N. et al. Inostrannye aviatsionnye dvigateli i gazoturbinnye ustanovki: po materialam zarubezhnykh publikatsii. Spravochnik (Foreign-made aircraft engines and gas turbine engines: based on foreign publications. Handbook). Issue 15, Moscow, TsIAM, 2010, 415 p.

  18. Shustov I.G. Dvigateli 1944-2000: Aviatsionnye, raketnye, morskie, promyshlennye. Illyustrirovannyi spravochnik. Seriya: Otechestvennaya aviatsionnaya i raketno-kosmicheskaya tekhnika (Engines of 1944-2000: Aviation, rocket, sea, industrial. Illustrated reference book. Series: Home-produced Aviation and Space- Rocket Technology), Moscow, AKS-Konversalt: Tsentr istorii aviatsionnykh dvigatelei, 2000, 434 p.

  19. Zrelov V.A. Otechestvennye gazoturbinnye dvigateli. Osnovnye parametry i konstruktivnye skhemy (Home- produced gas turbine engines. Key parameters and design schemes), Moscow, Mashinostroenie, 2005, 336 p.

  20. Shustov I.G. (eds) Aviatsionnye dvigateli (Aircraft engines), Moscow, Aerosfera, 2007, 319 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI