Aeronautical and Space-Rocket Engineering
Aerodynamics and heat-exchange processes in flying vehicles
DOI: 10.34759/vst-2021-1-19-34
Аuthors
1*, 2**1. Yakovlev Corporation Regional Aircraft Branch, 26, Leninskaya Sloboda str., Moscow, 115280, Russia
2. Central Aerohydrodynamic Institute named after N.E. Zhukovsky (TsAGI), 1, Zhukovsky str., Zhukovsky, Moscow Region, 140180, Russia
*e-mail: moshkov89@bk.ru, p_moshkov@ssj.irkut.com
**e-mail: samohin_vf@mail.ru
Abstract
Recently, the tendency towards International Regulatory Requirements on civil aircraft community noise toughening is being observed. Modern manned aerial vehicles under design should be less noisy than the aircraft being operated at present. Modern aircraft design is being performed with regard to current and prospective International regulations on the community noise. Thus, the urgency of the acoustic design issue provision in the framework of the civil aircraft lifetime is beyond any doubt.
At the same time, information on what works should be performed at various stages of the new light propeller-driven airplane creation to ensure its successful certification on the community noise and competitiveness at the world market is not presented in published works. The purpose of the presented work consists in concept forming of light propeller-driven airplane design in the framework of the product lifecycle, as well as analysis of the EASA (European Aviation Safety Agency) certification test database to determine requirements to the aircraft being designed and the effect of various factors on certification noise levels
The article demonstrates the role and place of aero-acoustic studies in the new aircraft design. Based on the EASA acoustic certification test database analysis, the article revealed that the value of noise level margin, average for all light propeller-driven airplanes, being certified according to the clause 10.4b of the ICAO Standard, was 6 dBA. The impact of blades number and propeller diameter, as well as apparent power of the power plant and presence of exhaust noise silencers of the internal combustion engine on the airplanes community noise was considered.
The presented structure of works in the field of aero-acoustics while the a light propeller-driven aircrafts design can be employed in the design of propeller-driven unmanned aerial vehicles of an airplane type as well. Requirements to the unmanned aerial vehicles should additionally account for the degree of its audibility and acoustic signature, and flight tests in this case will be preliminary (developmental) test.
Keywords:
light propeller-driven aircraft, community noise, aero-acoustics design, noise reduction technologiesReferences
-
Environmental Protection. Annex 16 to the Convention on International Civil Aviation, Monreal, Kanada, ICAO, 2011. Vol. 1 «Aircraft Noise», 227 p.
Aviatsionnye Pravila. Chast’ AP-36, Sertifikatsiya vozdushnykh sudov po shumu na mestnosti (Aviation Regulations. Part of the AP-36, Aircraft community noise Certification), Mezhgosudarstvennyi aviatsionnyi komitet, 2003.
Samokhin V.F., Munin A.G., Kuznetsov V.S. Polet. Obshcherossiiskii nauchno-tekhnicheskii zhurnal, 2009, no. 1, pp. 9–13.
Dmitriev V.G., Munin A.G., Samokhin V.F., Chernyshev S.L. Obshcherossiiskii nauchno-tekhnicheskii zhurnal, 2009, no. 10, pp. 15–22.
Dmitriev V.G., Samokhin V.F., Khaletskii Yu.D. Polet. Obshcherossiiskii nauchno-tekhnicheskii zhurnal, 2019, no. 4, pp. 3–18.
Moshkov P., Samokhin V., Yakovlev A. About the community noise problem of the light propeller aircraft, Akustika, 2019, vol. 34, pp. 68–73.
Moshkov P.A. Problems of civil aircraft design with regard to cabin noise requirements, Aerospace MAI Journal, 2019, vol. 26, no 4, pp. 28–41. DOI: 10.34759/vst-2019-4-28-41
Moshkov P.A., Samokhin V.F., Yakovlev A.A. Problem of the community noise reduction for aircraft with open rotor engines. Russian Aeronautics, 2018, vol. 61, no. 4, pp. 647–650.
EASA certification noise levels. available at: https:// www.easa.europa.eu/easa-and-you/environment/easa-certification-noise-levels
Shum aviatsionnyi. Dopustimye urovni shuma na territorii zhiloi zastroiki i metody ego izmereniya, GOST 22283-2014 (Aviation noise. Acceptable noise levels in residential areas and methods for measuring it. State Standard 22283-2014), Moscow, Standartinform, 2015, 13 p.
Shum na rabochikh mestakh, v pomeshcheniyakh zhilykh, obshchestvennykh zdanii i na territorii zhiloi zastroiki. normy, SN 2.2.4/2.1.8.562-96 (Noise at the workplace, in residential and public buildings, and on the territory of residential development. Sanitary code no. SN 2.2.4/2.1.8.562-96). 1996.
Kazhan V.G., Moshkov P.A., Samokhin V.F. Nauka i obrazovanie. MGTU im. N.E. Baumana, 2015, no. 7, pp. 146–170. DOI: 10.7463/0715.0782827
Kartyshev O.A., Nikolaikin N.I. Nauchnyi vestnik MGTU GA, 2017, vol. 20, no. 4, pp. 146–155.
Kartyshev O.A., Nikolaikin N.I. Nauchnyi vestnik MGTU GA, 2017, vol. 20, no. 3, pp. 30–40.
Zamtfort B.S., Medvedev Yu.V. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 2012, vol. 14, no. 6, pp. 309–310.
Zamtfort B.S., Medvedev Yu.V. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika S.P. Koroleva (natsional’nogo issledovatel’skogo universiteta), 2012, no. 3-1 (34), pp. 39-43.
Moshkov P.A. Nauchno-tekhnicheskii vestnik Povolzh’ya, 2015, no. 4, pp. 101-106.
Moshkov P.A., Samokhin V.F. Experimental determination of piston engine share in the light propeller aircraft power plant total noise, Aerospace MAI Journal, 2016, vol. 23, no. 2, pp. 50–61.
Moshkov P.A. Prognozirovanie i snizhenie shuma na mestnosti legkikh vintovykh samoletov (Community noise prediction and reduction of light propeller-driven aircraft), PhD thesis, Moscow, MAI, 2015, 143 p.
Aviatsionnaya tekhnika grazhdanskogo naznacheniya. Poryadok sozdaniya. Osnovnye polozheniya. GOST R 58849-2020 (Civil aeronautical engineering. Order of creation. Fundamentals. State Standard R 58849-2020), Moscow, Standartinform, 2020, 61 p.
Dmitriev V.G., Samokhin V.F. Complex of algorithms and programs for calculation of aircraft noise, TsAGI Science Journal, 2014, vol. 45, no. 3-4, pp. 367–388.
Granich V.Yu., Dutov A.V., Miroshkin V.L., Sypalo K.I. Ekonomika nauki, 2020, vol. 6, no. 1–2, pp. 6–10.
Anisimov K.S., Kazhan E.V., Kursakov I.A., Lysenkov A.V., Podaruev V.Yu., Savel’ev A.A. Aircraft layout design employing high-precision methods of computational aerodynamics and optimization, Aerospace MAI Journal, 2019, vol. 26, no. 2, pp. 2–19.
Barvinok V.A. et al. Sovremennye tekhnologii v avia- i raketostroenii (Modern technologies in aircraft and rocket engineering), Moscow, Mashinostroenie, 2014, 320 p.
Sirotin N.N. et al. Osnovy konstruirovaniya, proizvodstva i ekspluatatsii aviatsionnykh gazoturbinnykh dvigatelei i energeticheskikh ustanovok v sisteme CALS-tekhnologii (Fundamentals of design, production and operation of aviation gas turbine engines and power plants in CALS-technologies system), Moscow, Nauka, 2011-2012.
Pogosyan M.A., Bratukhin A.G., Savel’evskikh E.P., Strelets D.Yu., Zlygarev V.A. Vestnik mashinostroeniya, 2017, no. 5, pp. 60–65.
Bratukhin A.G. (ed.) Mezhdunarodnaya ehntsiklopediya CALS-tekhnologii «Aviatsionno-kosmicheskoe mashinostroenie» (International encyclopedia of «Aerospace engineering» CALS technologies), Moscow, NITSASK, 2015, 608 p.
Kop’ev V.F., Titarev V.A., Belyaev I.V. Uchenye zapiski TsAGI, 2014, vol. 45, no. 3-4, pp. 293–372.
Titarev V.A., Faranosov G.A., Chernyshev S.A., Batrakov A.S. Numerical modeling of the influence of the relative positions of a propeller and pylon on turboprop aircraft noise, Acoustical Physics, 2018, vol. 64, no. 6, pp. 760-773. DOI: 10.1134/S0320791918060126
Moshkov P.A., Samokhin V.F. Effect of spacing between pusher propeller and wing on environmental light aircraft noise, TsAGI Science Journal, 2016, vol. 47, no. 6, pp. 639–647. DOI: 10.1615/TsAGISciJ.2017019465
Hubbard H.H. Aeroacoustics of flight vehicles: Theory and Practice. Vol. 1 «Noise sources», NASA References Publication 1258, 1991, vol.1, WRDC, Technical report 90-3052, 606 p.
Yu P., Peng J., Bai J., Han X., Song X. Aeroacoustic and aerodynamic optimization of propeller blades, Chinese Journal of Aeronautics, 2020, vol. 33, no. 3, pp. 826–839. DOI: 10.1016/j.cja.2019.11.005
Drobietz R., Neuwerth G. Noise reduction potential of swept propeller blades, Proceedings of CEAS Forum on Aeroacoustics of rotors and propellers (09-11 June 1999; Rome, Italy), pp. 65–77.
Samokhin V.F. Semiempirical method for estimating the noise of a propeller, Journal of Engineering Physics and Thermophysics, 2012, vol. 85. no. 5, pp. 1157-1166.
Moshkov P.A., Samokhin V.F. Propeller-driven light aircraft power plant noise Integral model, Aerospace MAI Journal, 2016, vol. 23, no. 4, pp. 36–44.
Moshkov P.A., Samokhin V.F. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie, 2016, vol. 15, no. 3, pp. 25–34. DOI: 10.18287/2541-7533-2016-15-3-25-34
Moshkov P.A., Samokhin V.F. Noise and acoustic signature reduction methods for unmanned aerial vehicles with engine-propeller power plant, Aerospace MAI Journal, 2017, vol. 24, no.1, pp. 38–48.
Hartzell Propeller Inc. Manual revision transmittal, no.159, Rev. 49, 2015, 1656 p.
HOFFMANN GmbH & Co. KG. Operation and maintenance manual, no. E 287 A. HO-V 123 () Series. Constant Speed Propeller, 2002, 38 p.
HOFFMANN GmbH & Co. KG. Operation and maintenance manual. No. E 0110.74. HO() Series, HO4() Series. Fixed pitch propeller, 2002, 20 p.
GT Propellers, available at: https://www.gt-propellers.com
MT-Propeller, available at: https://www.mt-propeller.com/en/entw/products.htm
Ostroukhov S.P. Aerodinamika vozdushnykh vintov i vintokol’tsevykh dvizhitelei (Aerodynamics of propeller, and screw-ring propulsors), Moscow, Fizmatlit, 2014, 328 p.
Limbach Flugmotoren GmbH & Co. KG. Operating and Maintenance Manual Limbach L 2000 Engine for Powered Gliders and Very Light Aircraft, 2016, 48 p. 45. Motores JPX 4T60 Caracteristicas Engines, available at: http://www.ultraligero.net/Descargas/Manuales/JPX/4t60.htm
Limbach Flugmotoren GmbH & Co. KG. Operating and Maintenance Manual Limbach L 1700 Engine for Powered Gliders and Very Light Aircraft, 2016, 48 p.
S 1800 −1-ES1 S 1800 −1-ES1C S 1800 −1-RS1 — Sauer Motoren, available at: http://www.sauer-flugmotorenbau.de/resources/DatenblattS1800neu.pdf
Moshkov P.A., Samokhin V.F., Yakovlev A.A. Selection of an audibility criterion for propeller driven unmanned aerial vehicle, Russian Aeronautics, 2018, vol. 61, no. 2, pp. 149-155. DOI: 10.3103/S1068799818020010
Moshkov P., Ostrikov N., Samokhin V., Valiev A. Study of Ptero-G0 UAV Noise with Level Flight Conditions, 25th AIAA/CEAS Aeroacoustics Conference, 2019, AIAA Paper no. 2019–2514. DOI: 10.2514/6.2019-2514
mai.ru — informational site of MAI Copyright © 1994-2024 by MAI |