Method for characteristics predicting of prospective earth probing spacecraft with optoelectronic imaging hafdware

Aeronautical and Space-Rocket Engineering

Design, construction and manufacturing of flying vehicles


DOI: 10.34759/vst-2021-3-95-112

Аuthors

Lamzin V. A.*, Lamzin V. V.**

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: 8465836@mail.ru
**e-mail: 8916846583@mail.ru

Abstract

The article deals with the task medium-term forecasting of rational characteristics (imaging hardware spatial resolution, weight and cost) of a prospective spacecraft for remote Earth probing with optoelectronic imaging hardware. It proposes a method for the task solving employing extrapolation methods based on the statistical data on the products prototypes. Forecasting is being performed by extrapolating into the future the regularities revealed in the process of studying characteristics up to the present moment.

For the proposed method realization, the searching algorithm, including such blocks as initial data, extrapolating prediction and a spacecraft characteristics evaluation, was developed, and the results of its technical-and-economic characteristics at the medium-term forecasting are presented. The source data block includes information on the characteristics of the Earth remote probing spacecraft with optoelectronic imaging hardware of various types. Statistical data processing on the characteristic (parameter) under study is being performed in the extrapolating prediction blockIt is assumed herewith that parameter realization is a random function of time (a forecast function).

Characteristics predicting of the Earth remote probing spacecraft is being performed for the following types of optoelectronic imaging hardware: panchromatic range; multispectral visible and near-infrared ranges; combined (panchromatic and multispectral) visible and near-infrared ranges. The article presents the computational results of Earth remote probing spacecraft characteristics being predicted, such as spatial resolution of imaging hardware of various types, weight and cost of the spacecraft creation up to 2030.

Computational results show that the following improvements are forecasted for the spacecraft with panchromatic and combined imaging hardware:

– The spatial resolution improvement up to 0.19–0.22 m with maximum diameter of the Korsch type optical system up to 1.3–1.4 m;

– Weight improvement up to 3000–4000 kg;

– Insufficient cost of creation increase up to 235 million of conventional units.

For the spacecraft with multispectral imaging hardware:

– The spatial resolution improvement up to 3.0–4.0 m;

– Optical system diameter up to 0.25–0.32 m;

– Weight improvement up to 500 kg, and cost of creation increase up to 60 million of conventional units.

Thus, the method proposed in the article and developed design models allow predicting technical-and-economic characteristics of prospective modifications of the Earth remote probing spacecraft for 7–10 years, and ensuring necessary research accuracy.

Keywords:

remote Earth probing, space system, prospective spacecraft, optoelectronic survey instruments, forecasting, spacecraft technical-and economic characteristics

References

  1. Golubkov G.V., Manzhelii M.I., Berlin A.A., Morozov A.N., Eppel’baum L.V. Vestnik MGTU im. N.E. Bauman, 2018, no. 1(76), pp. 61-73. DOI: 10.18698/1812-3368-2018-1-61-73

  2. Grishin V.A. Estimation of Visual Shoreline Navigation Errors. Journal of Navigation, 2019, vol. 72, no. 2, pp. 389–404. DOI: 10.1017/S0373463318000875

  3. Golubkov G.V., Manzhelli M.I., Berlin A.A. et al. The problems of passive remote sensing of earth surface. 5th International Conference “Atmosphere, Ionosphere Safety” (Kaliningrad, Russia), 2016, vol. 76, no. 1, pp. 35–40. DOI: 10.18698/1812-3368-2018-1

  4. Kravchenko V.F., Kravchenko O.V., Pustovoit V.I., Churikov D.V., Yurin A.V. Atomic, WA-Systems, and R-Functions Applied in Modern Radio Physics Problems: Part IV. Journal of Communications Technology and Electronics, 2015, vol. 60, pp. 1153-1190. DOI: 10.1134/S1064226915110078

  5. Kravchenko V.F., Churikov D.V., Yurin A.V. Analytical Description of Complex Shape Locus with the Help of R‐Operations and Atomic Functions. The Digital Signal and Image Processing. Telecommunications and Radio Engineering, 2011, vol. 70, no. 4, pp. 283–323. DOI: 10.1615/TelecomRadEng.v70.i4.10

  6. Zhang J., Yan J., Ma Y., Xu D., Li P., Jie W. Infrastructures and services for remote sensing data production management across multiple satellite data centers. Cluster Computing, 2016, vol. 19, pp. 1243-1260. DOI: 10.1007/s10586-016-0577-6

  7. Chi M., Plaza A., Benediktsson J.A., Sun Z., Shen J., Zhu Y. Big data for remote sensing: challenges and opportunities. Proceedings of the IEEE, 2016, vol. 104, no. 11, pp. 2207–2219. DOI: 10.1109/jproc.2016.2598228

  8. Chen L., Ma Y., Liu P., Wei J., Jie W., He J. A review of parallel computing for large-scale remote sensing image mosaicking. Cluster Computing, 2015, vol. 18, no. 2, pp. 517–529.

  9. Darnopykh V.V., Efanov V.V., Zanin K.A., Malyshev V.V. Synthesis of an Information Channel in Planning Goal Functioning of Space Remote Sensing Systems According to Quality Creteria. Jornal of Computer and System Sciences international, 2010, vol. 49, no. 4, pp. 607–614. DOI: 10.1134/S1064230710040118

  10. Matveev Y.A., Lamzin V.V. Optimization of parameters of earth remote sensing space system taking into account the features of spacecraft designer decisions. Aerospace MAI Journal, 2009, vol. 16, no. 6, pp. 55-66.

  11. Matveev Yu.A., Lamzin V.A, Lamzin V.V. Metody prognozirovaniya kharakteristik modifikatsii kosmicheskikh apparatov distantsionnogo zondirovaniya Zemli (Methods for characteristics predicting of spacecraft modifications for remote Earth probing), Moscow, MAI, 2019, 158 p.

  12. Zanin K.A., Moskatin’ev I.V. Vestnik NPO im. S.A. Lavochkina, 2019, no. 2(44), pp. 28–36. DOI: 10.26162/LS.2019.44.2.003

  13. Baklanov A.I., Blinov V.D., Gorbunov I.A. et al. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta imeni akademika S.P. Koroleva (natsional’nogo issledovatel’skogo universiteta), 2016, vol. 15, no. 2, pp. 30–35. DOI: 10.18287/2412-7329-2016-15-2-30-35

  14. Matveev Yu.A., Lamzin V.A, Lamzin V.V. Osnovy proektirovaniya modifikatsii kosmicheskikh apparatov distantsionnogo zondirovaniya Zemli (Fundamentals of spacecraft modifications designing for remote Earth probing), Moscow, MAI, 2015, 176 p.

  15. Matveev Yu.A., Lamzin V.A., Lamzin V.V. Vestnik NPO im. S.A. Lavochkina, 2015, no. 4(30), pp. 53–59.

  16. Alifanov O.M., Matveev Yu.A., Lamzin V.V., Lamzin V.A. Materialy IX Mezhdunarodnoi konferentsii “Aviatsiya i kosmonavtika – 2010” (16-18 November 2010; Moscow), St. Petersburg, Masterskaya pechati, 2010, pp. 102–103.

  17. Lamzin V.V. A performance investigation for optical-electronic Earth remote sensing system during planned upgrade. Aerospace MAI Journal, 2009, vol. 16, no. 5, pp. 46-55.

  18. Matveev Yu.A., Lamzin V.A., Lamzin V.V. Vestnik NPO im. S.A. Lavochkina, 2015, no. 1(27), pp. 41–47.

  19. Garbuk S.V., Gershenzon V.E. Kosmicheskie sistemy distantsionnogo zondirovaniya Zemli (Space systems for remote Earth probing), Moscow, Izdatel’stvo A i B, 1997, 296 p.

  20. Matveev Yu.A., Lamzin V.V. Polet. Obshcherossiiskii nauchno-tekhnicheskii zhurnal, 2007, no. 5, pp. 31–37.

  21. Kucheiko A.A. (ed) Kosmicheskaya s"emka Zemli. Sputniki opticheskoi s"emki Zemli s vysokim razresheniem (Space survey of the Earth. Satellites of the Earth optical survey with high resolution), Moscow, Radiotekhnika, 2001, 136 p.

  22. Sevast’yanov N.N., Branets V.N., Panchenko V.A. et al. Trudy MFTI, 2009, vol. 1, no. 3, pp. 15–23.

  23. Polishchuk G.M, Pichkhadze K.M., Moisheev A.A. et al. Polet. Obshcherossiiskii nauchno-tekhnicheskii zhurnal, 2006, no. 11, pp. 3–6.

  24. Gorelov V.A., Lukashevich E.L., Strel’tsov V.A. Informatsionnyi byulleten’ GIS-Assotsiatsii, 2002, no. 4-5; 2003, no. 1-2.

  25. Fortescue P., Swinerd G., Stark J. (eds) Spacecraft systems engineering. Wiley; 4th edition, 2011, 724 p.

  26. Costes V., Cassar G., Escarrat L., Conseil S. Optical design of a compact telescope for the next generation earth observation system. International conference on Space Optics — ICSO 2012 (20 November 2017; Ajaccio-Corsica, France). DOI: 10.1117/12.2309055

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI