Aeronautical and Space-Rocket Engineering
Design, construction and manufacturing of flying vehicles
DOI: 10.34759/vst-2021-3-113-129
Аuthors
, *, **Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia
*e-mail: innovatore@mail.ru
**e-mail: sputnik@ssau.ru
Abstract
Thermal mathematical models with distributed and concentrated parameters of the AIST series small spacecraft were developed. Verification of these models was performed based on telemetry data obtained while he spacecraft experimental operation. Verification possibility of theoretical calculations of the supposed small spacecraft temperatures and obtained telemetry parameters allows improving the technique for finding parameters of the thermal control system with improved qualitative indicators. The authors developed the technique for the small spacecraft thermal control system design. Computation of mathematical model of a small spacecraft with distributed parameters was performed with the Simcenter 3D Space Systems Thermal module of the Siemens NX specialized software. Computation of the spacecraft thermal state mathematical model based on differential equations with lumped parameters was performed with MATLAB software package in Simulink environment for the complex technical systems dynamic interdisciplinary modeling.
The developed technique of the thermal mathematical model was applied for developing a computational mathematical model of the thermal state of a prospective small spacecraft for environmental monitoring tasks. Thus, the main objectives of the study are as follows:
– obtaining and analyzing a real picture of the thermal regime of the «AIST» series small spacecraft based on the telemetry data;
– developing thermal mathematical model of a small spacecraft in distributed parameters;
– developing thermal mathematical model of a small spacecraft in lumped parameters;
– verifying computational models by the telemetry data;
– developing design technique for the small spacecraft thermal control system, with appropriate mathematical models application;
– solving partial design problems employing the developed technique.
Keywords:
small spacecraft, leaky spacecraft, thermal modeling, thermal control systemReferences
-
Alifanov O.M., Andreev A.N., Gushchin V.N. et al. Ballisticheskie rakety i rakety-nositeli (Ballistic missiles and launch vehicles), Moscow, Drofa, 2004, 512 p.
-
Kudryavtseva N.S. Osnovy proektirovaniya effektivnykh sistem termoregulirovaniya kosmicheskikh apparatov (Fundamentals of effective systems design for spacecraft thermal control), Moscow, MAI, 2012, 226 p.
-
Miao J., Zhong Q., Zhao Q., Zhao X. Spacecraft Thermal Control Technologies, Springer Nature Singapore Pte Ltd, 2021, 360 p.
-
Zemlyanskii B.A., Anfimov N.A., Balyko Yu.P. et al. Metodologicheskie osnovy nauchnykh issledovanii pri obosnovanii napravlenii kosmicheskoi deyatel’nosti, oblika perspektivnykh kosmicheskikh kompleksov i sistem ikh nauchno-tekhnicheskogo soprovozhdeniya. T. 4 Metodologiya issledovanii aerotermodinamiki i teplovykh rezhimov v obespechenie razrabotki izdelii raketno-kosmicheskoi tekhniki (Methodological basics of scientific research in substantiating the space activity trends, appearance of prospective space complexes and systems and their scientific-and-technical support. Vol. 4 Methodology of aerothermodynamics and thermal regimes modes research in support of space-rocket technology products development), Moscow, Dashkov & K, 2016, 384 p.
-
Kirilin A.N., Anshakov G.P., Akhmetov R.N., Storozh A.D. Kosmicheskoe apparatostroenie. Nauchno-tekhnicheskie issledovaniya i prakticheskie razrabotki AO “RKTs “Progress” (Space apparatus making. Scientific-and-technical research and practical developments of the JSC “RCC “Progress”), Samara, AGNI, 2017, 376 p.
-
Diaz-Aguado M., Greenbaum J., Fowler W.T., Lightsey E.G. Small satellite thermal design, test, and analysis. Proceedings of SPIE – The International Society for Optical Engineering, 2006, vol. 6221. DOI: 10.1117/12.666177
-
Toro S.M., Hornbuckle R.W., Lightsey G. FASTRAC Early Flight Results. Journal of small satellites, 2012, vol. 1, no. 2, pp. 49-61.
-
Alekseev V.A., Kudriavtseva N.S., Malozemov V.V., Pichulin V.S., Titova A.S., Shangin I.A. Mathematical modeling of heat processes of miniature unboard equipment. Aerospace MAI Journal, 2010, vol. 17, no. 1, pp. 55-61.
-
Alekseev V.A., Kudryavtseva N.S., Titova A.S. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie, 2018, no. 2(119), pp. 72–88. DOI: 10.18698/0236-3941-2018-2-72-88
-
Pichulin V.S., Alekseev V.A., Shishanov A.V. et al. Sistemy obespecheniya teplovogo rezhima radioelektronnykh ustroistv kosmicheskikh apparatov (Thermal control systems for the spacecraft radio-electronic devices), Moscow, Izdatel’stvo MAI, 2019, 112 p.
-
Alekseev V.A., Kudriavtseva N.S., Titova A.S. Heat chamber parameter choice for nonpressurized earth satellite antenna array thermal tests. Aerospace MAI Journal, 2014, vol. 21, no. 1, pp. 154-162.
-
Zharenov I.S., Zhumaev Z.S. Thermal Control Provision System for the TabletSat-Aurora microsatellite: design and flight adaptation. Aerospace MAI Journal, 2015, vol. 22, no. 3, pp. 63-75.
-
Fortescue P., Swinerd G., Stark J. (eds) Spacecraft systems engineering. Wiley, 4th edition, 2011, 724 p.
-
Kirilin A.N., Tkachenko S.I., Salmin V.V. et al. Malye kosmicheskie apparaty serii “AIST”. Proektirovanie, ispytaniya, ekspluatatsiya, razvitie (Small spacecraft of “AIST” series. Design, testing, operation, development), Samara, Izdatel’stvo SamNTs RAN, 2017, 348 p.
-
Vyatlev P.A., Sergeev D.V., Sysoev A.K., Sysoev V.K. Long-term storage impact on spacecraft temperature-regulating coating elements characteristics. Aerospace MAI Journal, 2020, vol. 27, no. 4, pp. 222-228. DOI: 10.34759/vst-2020-4-222-228
-
Hartsfield C.R., Shelton T.E., Palmer B.O., O’Hara R. All-metallic phase change thermal management systems for transient spacecraft loads. Journal of Aerospace Engineering, 2020, vol. 33, no. 4. DOI: 10.1061/(ASCE)AS.1943-5525.0001150
-
Bondarenko V.A., Ustinov S.N., Nemykin S.A., Finchenko V.S. Vestnik NPO im. S.A. Lavochkina, 2013, vol. 3, no. 19, pp. 37-42.
-
Kurenkov V.I. Osnovy proektirovaniya kosmicheskikh apparatov optiko-elektronnogo nablyudeniya poverkhnosti Zemli. Raschet osnovnykh kharakteristik i formirovanie proektnogo oblika (Fundamentals of spacecraft designing for the Earth’s surface optical-electronic observation. Main characteristics calculation and project appearance formation), Samara, Izdatel’stvo Samarskogo universiteta, 2020, 461 p.
-
Volgin S.S., Ivanushkin M.A., Kaurov I.V. et al. Kosmonavtika i raketostroenie, 2019, no. 1(106), pp. 80-91.
-
Ivanushkin M.A., Tkachenko I.S., Safronov S.L. et al. On the results of processing of the telemetry data received from the “AIST” small satellite constellation. Journal of Physics: Conference Series, 2019, vol. 1368, no. 4: 042062. DOI: 10.1088/1742-6596/1368/4/042062
-
Armin Veshkini, Kevin Lee, Chris Jackson, Christopher Pye, Modeling Lunar and Martian Environments with Simcenter 3D Space Systems Thermal. 49th International Conference on Environmental Systems (07-11 July 2019; Boston, Massachusetts). URI: https://hdl.handle.net/2346/84935
-
Hintermana E., Hoffman J.A. Simulating oxygen production on Mars for the Mars Oxygen In-Situ Resource Utilization Experiment. Acta Astronautica, 2020, vol. 170, pp. 678-685. DOI: 10.1016/j.actaastro.2020.02.043
-
Abrashkin V.I., Kirilin A.N., Salmin V.V. et al. Patent RU 198739 U1, 24.07.2020.
-
Matveev N.K. Ekranno-vakuumnaya teloizolyatsiya i opredelenie ee kharakteristik (Screen-vacuum thermal insulation and its characteristics determination), St. Petersburg, Izdatel’stvo BGTU, 2012, 40 p.
-
Kolesnikov A.V., Paleshkin A.V. Teplovoe proektirovanie kosmicheskikh apparatov (Thermal design of spacecraft), Moscow, Izdatel’stvo MAI, 2013, 96 p.
mai.ru — informational site of MAI Copyright © 1994-2024 by MAI |