Algorithns elaboration for defects detection and elimination of civil passenger aircraft

Aeronautical and Space-Rocket Engineering


DOI: 10.34759/vst-2022-2-158-165

Аuthors

Maron A. I.*, Maron M. A.**

Higher School of Economics, 20, Myasnitskaya str., Moscow, 101000, Russia

*e-mail: amaron@hse.ru
**e-mail: mmaron@hse.ru

Abstract

This work is up-to-date since cutting time of defects detection and elimination of civil passenger aircraft allows substantial reduction of departure delays and airlines losses associated with them. Statistical data analysis reveals that defects detecting and eliminating are the dominant causes of delays of civil aviation aircraft. The defects detection herewith takes 90% of the time. Modern aircraft is equipped with the onboard diagnostic systems. Their main purpose consists in controlling the aircraft technical state. They report on the presence of malfunction. However, they do not allow for the most part automatically localize the malfunction within the accuracy of the defect, which was its cause. The necessity for manual checking methods application employing specially developed software and hardware means arises. The time of defect detection depends on how well the algorithm for performing checks is selected. This time can be reduced if pre-elaborated searching algorithms are being placed at the technical staff disposal.

A significant effect will be achieved if and only if these algorithms are optimal by the criterion that reflects the real dependence of losses on the delay time. As statistics show, the losses grow exponentially with the increase in time spent on manual detection and elimination of a defect being the cause of a malfunction recorded by the onboard monitoring systems. In as much as the objective function is not additive, classical methods are not applicable for finding the desired algorithm. Heuristic methods do not guarantee the an optimal algorithm elaboration. Its finding by the brute force search is unrealistic, due to the huge number of possible options. The purpose of the article consists in proposing a computationally efficient method for optimal algorithms elaboration for defects detecting and eliminating, considering the exponential dependence of losses on the time of the defect detection and elimination. The algorithm is considered to be optimal if the average losses caused by the flight delay are minimal. The method for elaborating the desired algorithms based on the Bellman optimality principle proposed in this article for the first time. Previously, this approach was used only with a linear dependence of losses on the time for defects searching. Note that each combination of indications of the onboard diagnostic system has its own set of defects, with an accuracy up to which the defect that is the cause of the malfunction is being localized. The number of possible combinations of indications of the onboard diagnostic system is large. Each of them should correspond to its own manual search algorithm. Naturally, the time of its elaboration should not be too long. The proposed method satisfies this requirement. The algorithm elaboration and its presentation to a specialist may well be performed by a modern mobile device, which is not even necessarily to be a full-fledged PC. The materials of this article are of practical value for managers and employees of civil passenger aircraft operation servicing.

Keywords:

civil passenger aircraft, defects detection and elimination algorithms, dynamic programming

References

  1. Solov’ev Yu.A. Nauchnyi vestnik MGTU GA. Seriya Ekspluatatsiya vozdushnogo transporta i remont aviatsionnoi tekhniki. Bezopasnost’ poletov, 2005, no. 85, pp. 126-129.
  2. Makarovskii I.M. Osnovy tekhnicheskoi ekspluatatsii i diagnostiki aviatsionnoi tekhniki (Fundamentals of technical servicing and diagnostics of aviation equipment), Samara, Samarckii gosudarstvennyi aerokosmicheskii universitet, 2004, pp. 102-115.
  3. Nemoudryi K.V. Research on the problem of regional aircraft shortage in Russian civil aviation. Aerospace MAI Journal, 2013, vol. 20, no. 2, pp. 16-20.
  4. Knotts R. Civil Aircraft Maintenance and Support: Fault Diagnosis from a Business Perspective. Journal of Quality in Maintenance Engineering, 1999, vol. 5, no. 4, pp. 335-347. DOI: 10.1108/13552519910298091
  5. Krylov A.A., Moskaev V.A. A technique for fluoroscopic control and analysis of technical condition of aircraft structural elements with honeycomb filler. Aerospace MAI Journal, 2019, vol. 26, no. 2, pp. 139-146.
  6. Zasukhin A.S. Nauchnyi vestnik MGTU GA, 2014, no. 205(7), pp. 95-99.
  7. Neretin E.S. Software for airborne electronic devices test-system. Aerospace MAI Journal, 2011, vol. 18, no. 3, pp. 177-184.
  8. Dunaev M.P., Dunaev A.M. Vestnik Inzhenernoi shkoly Dal’nevostochnogo federal’nogo universiteta, 2014, no. 2(19), pp. 18-25.
  9. Chao C.S., Yang D.L., Liu A.C. An automated fault diagnosis system using hierarchical reasoning and alarm correlation. Journal of Network and Systems Management, 2001, vol. 9, no. 2, pp. 183–202. DOI: 10.1023/A:1011315125608
  10. Zhang S., Song L., Zhang W., Hu Z., Yang Y. Optimal Sequential Diagnostic Strategy Generation Considering Test Placement Cost for Multimode Systems. Sensors, 2015, vol. 15, no. 10, pp. 25592-25606. DOI: 10.3390/s151025592
  11. Parkhomenko P.P., Sogomonyan E.S. Osnovy tekhnicheskoi diagnostiki: Optimizatsiya algoritmov diagnostirovaniya, apparaturnye sredstva (Fundamental of technical diagnostics: optimization of technical diagnosis algorithms, equipment for technical diagnosis), Moscow, Energiya, 1981, pp. 84-104.
  12. Malysheva T.A. Organizatsionno-metodicheskoe obespechenie sistemy podderzhki prinyatiya reshenii v oblasti regulyarnosti poletov vozdushnykh sudov grazhdanskoi aviatsii (Organizational-and-methodological provision for the decision support system ensuring in the field of flights regularity of civil aviation aircraft), Doctor’s thesis, Moscow, MGTU GA, 2007, 200 p.
  13. Gubernatorov K.N., Kiselev M.A., Moroshkin Y.V., Chekin A.Y. Studying elements reliability impact on the aircraft functional systems architecture. Aerospace MAI Journal, 2019, vol. 26, no. 1, pp. 41-50.
  14. Wei X., Yingqing G. Aircraft Engine Sensor Fault Diagnostics Based on Estimation of Engine’s Health Degradation. Chinese Journal of Aeronautics, 2009, vol. 22, no. 1, pp. 18-21. DOI: 10.1016/S1000-9361(08)60064-3
  15. Engelhardt G., Macdonald D. Unification of the deterministic and statistical approaches for predicting localized corrosion damage, I. Theoretical foundation. Corrosion science, 2004, vol. 46, no. 11, pp. 2755–2780. DOI: 10.1016/j.corsci.2004.03.014
  16. Maximov N.A., Solodovnikova D.A., Sharonov A.V. Mobile system for fixing and accounting for aircraft external damages while preflight checkup. Aerospace MAI Journal, 2017, vol. 24, no. 3, pp. 43-50.
  17. Mashoshin O.F. Diagnostika aviatsionnoi tekhniki: informatsionnye osnovy (Aircraft diagnostics: information basics), Moscow, MGTU GA, 2007, 141 p.
  18. Grinenko A.V., Nesterov V.V., Labetskii V.L. Avtomatika, svyaz’, informatika, 2001, no. 11, pp. 22–25.
  19. Maron A.I. Nadezhnost’, 2013, no. 4, pp. 110-113.
  20. Karibskii V.V., Parkhomenko P.P., Sogomonyan E.S., Khalchev V.F. Osnovy tekhnicheskoi diagnostiki. Kn.1. Modeli, ob"ektov, metody i algoritmy diagnoza (Fundamentals of technical diagnostics. Book 1. Models, objects, methods and algorithms of diagnosis), Moscow, Energiya, 1976, pp. 90-127.
  21. Efanov D.V. Postroenie optimal’nykh algoritmov poiska neispravnostei v tekhnicheskikh ob"ektakh (Elaboration of optimal algorithms for troubleshooting in technical objects), Saint Petersburg, FGBOU VPO PGUPS, 2014, 49 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI