Analysis of the possibility of creating different purpose aviation engines of the based engine core

Aeronautical and Space-Rocket Engineering


DOI: 10.34759/vst-2023-1-156-166

Аuthors

Gusmanova A. A.*, Ezrokhi Y. A.**

Central Institute of Aviation Motors named after P.I. Baranov, CIAM, 2, Aviamotornaya str., Moscow, 111116, Russia

*e-mail: 30105@ciam.ru
**e-mail: yaezrokhi@ciam.ru

Abstract

Traditional method based on definition of the most rational engine and its units project parameters proceeding from intended purpose and features of operation is usually used when the new aviation gas turbine engine (GTE) creation in practice. Besides, another method, supposing max-imum possible use of some engine units and elements from its predecessor already manufactured and checked up in operation, is widely used.

The rest of engine units of the new engine are designed anew, most of-ten at higher technical and/or technological level. In this case, it is possible to expect occurrence of the new engine (usually of the same generation) in a shorter time and at a lower cost.

In practice, preserved engine units are usually considered the high-pressure compressor (HPC), as the most labor-intensive in designing and operational development GTE unit, or engine core, consisting of the HPC, the combustion chamber and the high-pressure turbine (HPT).

For the successful realization of this method when creating a new en-gine (or families of engines) of the required thrust or power rate, it is necessary, that initial «engine-donor» has a core with the necessary parameters, first of all, core size parameter and compressor pressure ratio.

Because such a condition is not always executable, the problem of creation new engine core, capable of meeting the thrust and power requirements of a number of engines for various purpose constructed on the basis of this unified core, is set.

The results of parametrical research of three the most widespread schemes engines variants, having same base engine core, are presented in the article.

As an example, options for replacing some foreign engines, applied on domestic aircrafts, with new alternative engines, constructed on the basis of this unified core, are shown.

Keywords:

unified core, core size parameter, turbofan engine, turboshaft engine, trust and specific fuel parameters, engine mathematical model

References

  1. Skibin V.A., Solonin V.I., Palkin V.A. Raboty vedushchikh aviastroitel’nykh kompanii v obespechenie sozdaniya perspektivnykh aviatsionnykh dvigatelei. Analiticheskii obzor (Works of leading aircraft building companies on ensuring prospective aircraft engines creation. Analytical review), Moscow, TsIAM, 2010, 673 p.
  2. Koff B.L. F100-PW-229 Higher Thrust in Same Frame Size. Journal of Engineering for Gas Turbines and Pow-er, 1989, vol. 111, no. 2, pp. 187–192. DOI: 1115/1.3240235
  3. Entsiklopediya. T. IV-21 Samolety i vertolety. Kn.3 Aviatsionnye dvigateli (Mechanical engineering. Encyclopedia. Vol. IV-21 Airplanes and helicopters. Book 3 Aircraft engines), Moscow, Mashinostroenie, 2010, pp. 192–200.
  4. Ezrokhi Y.A., Morzeeva T.A. Estimated and analytical study of the possibility to develop a bypass turboprop with afterburning chamber based on baseline gas generator. Aerospace MAI Journal, 2020, vol. 27, no. 1, pp. 152–163. DOI: 10.34759/vst-2020-1-152-163
  5. Sorkin L.I. (ed.) Inostrannye aviatsionnye dvigateli (Foreign-made aircraft engines). Issue XIII, Moscow, Aviamir, 2000, 534 p.
  6. Sorkin L.I. (ed.) Inostrannye aviatsionnye dvigateli (Foreign-made aircraft engines). Issue 11, Moscow, TsIAM, 1987, 319 p.
  7. Inozemtsev A.A., Sandratskii V.L. Gazoturbinnye dvigateli (Gas turbine engines), Perm, Aviadvigatel’, 2006, 1204 p.
  8. Osipov I.V., Lomazov V.S. Aviatsionnye dvigateli, 2019, no. 4(5), pp. 11–18. DOI: 10.54349/26586061_2019_4_11
  9. Tskhovrebov M.M., Khudyakov E.I., Polev A.S. Osnovnye rezul’taty nauchno-tekhnicheskoi deyatel’nosti TsIAM (2010-2014), Moscow, TsIAM, 2015, pp. 56–65.
  10. Kholshchevnikov K.V., Emin O.N., Mitrokhin V.T. Teoriya i raschet aviatsionnykh lopatochnykh mashin (Theory and calculation of aircraft impeller machines), Moscow, Mashinostroenie, 1986, 432 p.
  11. Mashinostroenie: entsiklopediya. T. IV-21. Samolety i vertolety. Kn. 3. Aviatsionnye dvigateli (Mechanical engineering: Encyclopedia. Vol. IV-21 Planes and helicopters. Book 3 Aircraft engines), Moscow, Mashinostroenie, 2010, pp. 341–353.
  12. Tkachenko A.Y. Working fluid mathematical model for the gas turbine engine thermo-gas-dynamic design. Aerospace MAI Journal, 2021, vol. 28, no. 4, pp. 180–191. DOI: 10.34759/vst-2021-4-180-191
  13. Khoreva E.A., Ezrokhi Yu.A. Aerokosmicheskii nauchnyi zhurnal, 2017, no. 1. DOI: 10.24108/rdopt.0117.0000059
  14. Agaverdyev S.V., Zinenkov Y.V., Lukovnikov A.V. Optimal parameters selection of the strike unmanned aerial vehicle power plant. Aerospace MAI Journal, 2020, vol. 27, no. 4, pp. 105–116. DOI: 10.34759/vst-2020-4-105-116
  15. Lukovnikov A.V. A conceptual design of aircraft propulsion systems in multidisciplinary statement. Aerospace MAI Journal, 2008, vol. 15, no. 3, pp. 34–43.
  16. Gol’berg F.D., Gurevich O.S., Petukhov A.A. Trudy MAI, 2012, no. 58. URL: https://trudymai.ru/eng/published.php?ID=33278
  17. Kotovskii V.N., Vovk M.Yu. Matematicheskoe modelirovanie rabochego protsessa i kharakteristik GTD pryamoi reaktsii (Workflow mathematical modeling and characteristics of the direct reaction gas turbine engine), Moscow, Pero, 2018, 309 p.
  18. Ezrokhi Y.A., Gusmanova A.A. On accounting for turbine efficiency, while gas turbine engine parameters determining. Aerospace MAI Journal, 2022, vol. 29, no. 2, pp. 77–87. DOI: 10.34759/vst-2022-2-77-87
  19. Demenchenok V.P., Druzhinin L.N., Parkhomov A.L. et al. Teoriya dvukhkonturnykh turboreaktivnykh dvigatelei (Theory of bypass turbojet engines), Moscow, Mashinostroenie, 1979, 432 p.
  20. Shustov I.G. (ed.) Aviatsionnye dvigateli. Spravochnik (Aircraft engines: Handbook), Moscow, Aerosfera, 2007, 319 p.
  21. E.034 — PowerJet S.A. SaM146 Series engines. URL: https://www.easa.europa.eu/en/document-library/type-certificates/engine-cs-e/easae034-powerjet-sa-sam-146-series-engines
  22. Silovye ustanovki. Aviatsionnye, raketnye, promyshlennye 1944–2000 (Power plants. Aviation, rocket, industrial 1944-2000), Moscow, AKS-Konversalt, 2000, 276 p.
  23. Kuz’michev V.S., Rybakov V., Tkachenko A., Krupenich I. Optimization of Working Process Parameters of Gas Turbine Engines Line on the Basis of Unified Engine Core. ARPN Journal of Engineering and Applied Sciences, 2014, vol. 9, no. 10, pp. 1873–1878.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI