Numerical study of ammonium perchlorate flame kinetic mechanisms

Aeronautical and Space-Rocket Engineering


DOI: 10.34759/vst-2023-2-131-138

Аuthors

Shaydullin R. A.*, Sabirzyanov A. N.**

Kazan National Research Technical University named after A.N. Tupolev, 10, Karl Marks str., Kazan, 420111, Russia

*e-mail: samsankimanki@bk.ru
**e-mail: ansabirzyanov@kai.ru

Abstract

The solid propellant propulsion units depends designing entirely on the solid propellant selection. Solid propellant, especially a composite one, is of a complex composition, which includes oxidizer, binding propellant and an extra additives pack. Each component interaction determining and its burning kinetics studying are the first stage of the combustion process description. Thus, for example, the ammonium perchlorate is the most common oxidizer in solid fuel.

A number of N.E. Ermolin and Puduppakkam kinetic mechanisms were defined based on the experimental works of N.E. Ermolin and O.P. Korobeinichev on the composition determining of the stable individual substances of combustion products and the ammonium perchlorate decomposition by the distance from the combustion surface. N.E. Ermolin’s mechanism included 79 reactions, while Puduppakkam’s mechanism included 611 reactions and 105 substances.

The presented article considers the ammonium perchlorate combustion kinetic mechanisms, studies the temperature change and concentration of individual substances by the distance from the combustion surface. N.E. Ermolin’s mechanism (modified + 1 reaction 2NO = O2 + N2); Puduppakkam’s mechanism.

N.E. Ermolin’s boundary conditions (component composition of the decomposition products of the ammonium perchlorate condensed phase) were applied. Modeling was performed with the ANSYS CHEMKIN software in the one-dimensional PFR (Plug Flow Reactor) formulation.

The reduced mechanism (128 chemical reactions) was obtained based on the Pudupakkam mechanism reduction by the insignificant reactions determining. The results obtained by the less mechanism correspond satisfactory with the most detailed one, which includes reactions of octogen and hexogen combustion besides the ammonium perchlorate combustion. Thus, the mechanism. which may be applied in gas dynamics modeling was obtained.

The article presents the flame temperature profiles and individual stable chemical compounds concentrations at the pressure levels from 0.6 atm to 150 atm. The results obtained for the three mechanisms under study were compared by the end combustion products with the equilibrium calculation. N.E. Ermolin’s mechanism determines the list deviation from the equilibrium composition by the combustion products. Pudupakkam mechanism predicts the combustion products temperature much closer to thermodynamics.

Keywords:

ammonium perchlorate, chemical interaction mechanisms of thermal decomposition products, plug flow reactor, modeling, combustion products, flame temperature profile

References

  1. Mekhanizm termicheskogo razlozheniya perkhlorata ammoniya. Sbornik statei. (Mechanism of thermal decomposition of ammonium perchlorate. Collection of articles), Chernogolovka (MO), IFKh AN SSSR, 1981, 130 p.
  2. Korobeinichev O.P., Tereshchenko A.G., Shvartsberg V.M. et al. Fizika goreniya i vzryva, 1990, no. 2, pp. 53–58.
  3. Sinditskii V.P., Chernyi A.N., Chzho S.Kh. et al. Uspekhi v khimii i khimicheskoi tekhnologii, 2016, vol. 30, no. 8(177), pp. 18–20.
  4. Zubrilin I.A., Didenko A.A., Dmitriev D.N., Gurakov N.I., Hernandez M.M. Combustion process effect on the swirled flow structure behind a burner of the gas turbine engine combustion chamber. Aerospace MAI Journal, 2019, vol. 26, no. 3, pp. 124-136.
  5. Warnatz J., Maas U., Dibble R.W. Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation. Springer, 4th edition, 2006, 390 p.
  6. Gardiner W.C.Jr. (ed) Combustion Chemistry. Springer, 1984,‎ 522 p.
  7. Lepikhov A.V. Fiziko-khimicheskaya kinetika v gazovoi dinamike, 2016, vol. 17, no. 1. URL: http://chemphys.edu.ru/issues/2016-17-1/articles/626
  8. Kononov D.S. et al. Trudy Instituta sistemnogo programmirovaniya RAN, 2021, vol. 33, no. 6, pp. 228–240. DOI: 10.15514/ISPRAS-2021-33(6)-16
  9. Ermolin N.E., Korobeinichev O.P., Tereshchenko A.G., Fomin V.M. Fizika goreniya i vzryva, 1982, no. 3, pp. 46–49.
  10. Timnat Y.M. Advanced chemical rocket propulsion. First Edition, London etc., Academic press, 1987, 286 p.
  11. Shteinberg A.S. Bystrye reaktsii v energoemkikh sistemakh: vysokotemperaturnoe razlozhenie raketnykh topliv i vzryvchatykh veshchestv (Fast reactions in energy-intensive systems: high-temperature decomposition of rocket fuels and explosives), Moscow, Fizmatlit, 2006, 206 p.
  12. Arden E.A., Powling J., Smith W.A.W. Observations on the burning rate of ammonium perchlorate. Combustion and Flame, 1962, no. 1, pp. 21–33.
  13. Ermolin N.E. Fizika goreniya i vzryva, 1995, no. 5, pp. 58–69.
  14. Smyth D.A. Modeling solid propellant ignition events.D. Dissertation, Department of Chemical Engineering, Brigham Young University, Provo, UT, 2011, 225 p.
  15. Gross M.L. Two-dimensional modeling of AP/HTPB utilizing a vorticity formulation and one-dimensoinal modeling of AP and ADN. Ph.D. thesis, Department of Chemical Engineering, Brigham Young University, Provo, UT, 2007, 244 p.
  16. Beckstead M.W., Yang V., Puduppakkam K. Modeling and simulation of combustion of solid propellant ingredients using detailed chemical kinetics. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (11-14 July 2004; Fort Lauderdale, Florida). DOI: 2514/6.2004-4036
  17. Lin’s M.C. Chemical Kinetics Research Group. URL: http://mc2.chem.emory.edu/
  18. Smith J.M. Chemical engineering kinetics. McGraw-Hill College, 3rd Edition, New York, 1981, 676 p.
  19. Surzhikov S.T., Kraer Kh. Teplofizika vysokikh temperatur, 2003, vol. 41, no. 1, pp. 106–142.
  20. Lu T., Law Ch.K. A directed relation graph method for mechanism reduction. Proceedings of the Combustion Institute, 2005, vol. 30, no. 1, pp. 1333–1341. DOI: 10.1016/j.proci.2004.08.145
  21. Peters N., Rogg B. (eds.) Vol. 15 Lecture Notes in Physics. In: Reduced kinetic mechanisms for applications in combustion system. Springer-Verlag Berlin, Heidelberg, 1993, 362 p.
  22. Trusov B.G. ASTRA — Modelirovanie khimicheskikh i fazovykh ravnovesii pri vysokikh temperaturakh (ASTRA — Modeling of chemical and phase equilibria at high temperatures.), Moscow, MGTU im. N.E. Baumana, 1991, 40 p.
  23. Biruykov V.I., Kochetkov Y.M., Zenin E.S. Determination of thrust specific impulse losses occurring due to chemical non-equilibrium in aircraft power plant. Aerospace MAI Journal, 2017, vol. 24, no. 2, pp. 42-49.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI