Spacecraft and Rockets
Аuthors
*, **Central Research Institute of Machine Building, 4, Pionerskaya st., Korolev, Moscow region, 141070, Russia
*e-mail: igor.oleinikov@mcc.rsa.ru
**e-mail: controversialist@list.ru
Abstract
At the present moment the basis for automatic system designed for preventing dangerous situations in outer space (Russian acronym «ASPOS OKP») is created in MCC TSNIIMASH under the aegis of Roskosmos. The main task of the system is collision warning between spacecraft and space objects (SO).
Collision prevent between spacecraft and space object is more economical profitable then to remove its consequences [1].
The ballistic analysis of the Russian radar stations and optic-electronic systems contribution into the process of the different SO orbit determination is in this article.
Calculations show that accuracy of SO trajectory parameters determination by the Russian space monitoring system is not enough.
The main way to solve this problem is to develop the new radar stations based on the large antennas such as OKB MEI (Cobalt radar station) [7, 8] and Ysuriysk, which can track space objects using target designation from the present radar stations. In this case the low earth SO orbit determination accuracy becomes about 50
100 m and prediction errors in the 8 hours time interval dont exceed 300500 m.
The network of special optic devices, which are the part of the segment ASPOS OKP IPM RAN, was created to provide the ASPOS OKP central core with the information about space objects high apogee. The network covers the area of geosynchronous orbits between 20° west longitude and 170° east longitude, and the area of high apogee orbits. Moreover, Roscosmos designs its own optoelectronic devices network, which can provide the accuracy 0.51’’ for GEO and 12’’ for high apogee orbits using the ASPOS OKP segment target designations. Collaborative work between optoelectronic devices and big antennas radar stations allows ASPOS OKP to estimate the collision risks for high apogee spacecraft, because the determination accuracy and orbit prediction dont exceed 400 m.
Keywords:
space debris, the space object risk, the probability of collision, space monitoringReferences
- Oleinikov I.I., Pavlov V.P., Kovaleva M.V. Vestnik Moskovskogo aviatsionnogo instituta, 2012, vol. 19, no.5, pp. 32-37.
- Kozoriz A.I., Pavlov V.P. Kosmonavtika i raketostroenie, 2009, no.2 (55), pp. 53-59.
- Pavlov V.P. Metody otsenivaniya parametrov traektorii LA (Methods for parameter estimation of spacecraft trajectory), Moscow, MAI, 1990, p.36.
- Hoots F.R., Roehrich R.L. Models for Propagation of NORAD Element Sets. Space track Report № 3. U.S. Air Force. Aerospace Defense Command, 1980, 87 p.
- Egorov S. Rossijsij kosmos, 2007, no. 3 (15), pp. 16-19.
- Sokolov K.S., Trekin V.V., Obodenko V.B., Patronova E.S. Uspekhi sovremennoi radioelektroniki, 2012, no. 2, pp. 17-21.
- Meshkov M.N., Sulovev M.N., Ivanov V.A. Radiotekhnicheskie tetradi, 1999, no. 18, pp. 16-20.
- Meshkov M.N. Vestnik Moskovskogo energeticheskogo instituta, 2008, no. 3, pp.99-103.
- Sukhanov S.A. , Shilin V.D., Rykin A.V., Khutorovsky Z.N., Tuchin A.G., Samotochin A.S., Stepaniants V.A., available at: http://lfvn.astronomer.ru/report/0000076/ Vimpel.pdf (accesed 22.06.2011).
- Ilin A. Novosti kosmonavtiki, 2012, no. 7 (354), pp.42- 46.
- Agapov V.M., Molotov I.E., Kolessa A.E., Rori Fritspatrik, Sologub M., Bryusse Khanna. Materialy mezhdunarodnogo simpoziuma «Innovatsionnye tekhnologii v issledovanii okruzhayushchei sredy «RE:2013 — Research Environments 2013», Larnaka, Kipr, 13-17 May 2013, pp. 16-20.
mai.ru — informational site of MAI Copyright © 1994-2024 by MAI |