Active 3 dimensional stabilization system of photo and video equipment for unmaned aircraft

Aviation technics and technology


Аuthors

Boshlyakov A. A.*, Ovciankin G. I.**, Rusheva D. V.

Bauman Moscow State Technical University, MSTU, 5, bldg. 1, 2-nd Baumanskaya str., Moscow, 105005, Russia

*e-mail: boshlyakov@mail.ru
**e-mail: george.ovciankin@gmail.com

Abstract

Lately a lot of popularity gained unmanned aircraft vehicles (UAV) for research current situation on the ground from the air. Simultaneously, the increased requirements for the quality of the image obtained with a camera mounted on the UAV. It is necessary to ensure offset images are not more than 1/3 pixel. As a consequence to the fore extends the problem of vibration damping obtained from the engines of the aircraft. To ensure high quality video it is necessary to extinguish the three-dimensional angular camera shake amplitude of units of angular minutes and tens of hertz frequency. Currently the most widely used two basic ways to solve this problem, applicable to aircraft: gyro stabilization and electromechanical systems. Options considered to have a not satisfactory characteristic of weight and size, or the high cost.

The purpose of this work is to construct a three-dimensional stabilization system that provides vibration damping of aircraft body.

Proposed a new approach to the construction of the stabilization system of the camera. This system is constructed on the basis of the mechanism of parallel kinematics (hexapod) that allows to get high precision system at its small sizes. Developed a mathematical model of a 3-dimensional stabilization system based on hexapod and solved the inverse problem of kinematics.

Simulation in Matlab allowed to obtain requirements for the hexapod actuators. Analysis of different types of drives has shown that necessary characteristics have actuators built on piezo actuators. Their distinctive feature is the low weight, great efforts on the output, high speed of working off control signals.

In this work was developed a mathematical model of piezo actuators that takes into account the following parameters: the total weight of the reduced mobility, the coefficient of elasticity coefficient of the inverse piezoelectric effect, the ratio of direct piezoelectric effect, the damping coefficient, the electric capacity, the internal resistance of the source of emf. Mathematical modeling shown the possibility of using the piezo actuators in 3-dimensional stabilization system.

Keywords:

stabilization system, hexapod, executive device, the mathematical model, piezo actuators

References

  1. Antokhin A.I., Vlasov A.I., Kosolapov I.A. Elektronnyi zhurnal «Nauka i obrazovanie», 2011, no. 10, available at: http://technomag.edu.ru/doc/228456.html (accessed 20.04.2014).
  2. Kaganov Yu.T., Karpenko A.P. Elektronnyi zhurnal «Nauka i obrazovanie», 2009, no. 11, available at: http:/ /technomag.edu.ru/doc/228456.html (accessed 20.04.2014).
  3. Mathworks, available at: http://www.mathworks.com/matlabcentral/fileexchange/
  4. Nikolskii A.A. Tochnye dvukhkanalnye sledyashchie elektroprivody s pezokompensatorami (The precision two- channel servo drives with piezoactuator), Moscow, Energoatomizdat, 1988, 160 p.
  5. NII Jelpa, available at: http://www.elpapiezo.ru/
  6. Gutner I.E., Zhuravlev L.D., Zvorykin E.N., Zinenko V.M., Orlov M.V., Savik V.F., Svechinskaya G.V., Yanushkevich V.E. Patent RU 2184938 C1, 07.04.2010.
  7. SMIC AEROSPACE, available at: http://www.smicaerospace.com/goes/

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI