Control and navigation systems
Аuthors
1*, 1**, 2***1. Joint Stock Company “Russian Space Systems”, JSC “RSS”, 53, Aviamotornaya str., Moscow, 111250, Russia
2. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
*e-mail: vovasov@list.ru
**e-mail: vlavab@mail.ru
***e-mail: S.Gerko@mail.ru
Abstract
The aim of the work is to determine the settings of hardware delays in navigation receivers and satellite GLONASS transmitters in order to compensate ionospheric errors. The technique of the receiver calibration in this work is a method that does not use additional equipment to determine the settings of hardware delay algorithmic methods, taking into account the precise knowledge of navigation receiver position. The calibration allows one to retrieve values which are the difference of frequency-timing amendments not taken into account in the ephemerids. The assumption of the linear nature of hardware delay signals depending on the frequency allows one to determine the difference between the values observed delays in the L1 and L2 bands at zero, as well as announce changes lag of one type, in the ranges of L1 and L2, respectively. It is clear that these values are inseparable with the physical care of the timeline of the receiver and so will not have any impact on the assessment of the coordinates in the navigation solution.
The proposed method of calibration was applied to double frequency navigation receiver Javad TR-GNSS G3T. The study has shown the technique is sensitive to the accuracy of the navigation receiver. Using the same unbiased weighted difference allows one to apply the navigation algorithm for obtaining unbiased estimates of coordinates GLONASS receiver.
Keywords:
GLONASS reciever’s, pseudorange, vertical beam path error, ionosphere delays, tropospheric delays, hardware delays, SDCMReferences
- Podkorytov A.N. Vysokotochnoe mestoopredelenie v globalnykh navigatsionnykh sputnikovykh sistemakh v absolyutnom rezhime za schet razresheniya neodnoznachnosti psevdofazovykh izmerenii (High- precision location determination in global navigation satellite systems in the absolute mode due to ambiguity resolution pseudophase measurements), Moscow, 2014, MAI, 195 p.
- Perov A.I., Kharisov V.N. GLONASS. Printsipy postroeniya i funktsionirovaniya (GLONASS. Principles of construction and operation), Moscow, Radiotekhnika, 2010, 800 p.
- Kozlov D., Tkachenko M., Tochilin A. Statistical Characterization of Hardware Biases in GPS+GLONASS Receivers, ION GPS 2000, 19-22 September 2000, Salt Lake City, UT, pp. 817-826.
- Boriskin A., Zyryanov G. Algorithms to Calibrate and Compensate for GLONASS Biases in GNSS RTK Receivers Working with 3rd Party Networks. ION GNSS 21st. International Technical Meeting of the Satellite Division, 16-19 September 2008, Savannah, GA, pp. 376-384.
- Povalyaev A.A. Sputnikovye radionavigatsionnye sistemy: vremya, pokazaniya chasov, formirovanie izmerenii i opredelenie otnositelnykh koordinat (Satellite navigation system: the time, the clock, the formation of the measurement and determination of the relative coordinates), Moscow, Radiotekhnika, 2008, 328 p.
- Povalyaev A.A., Veitsel V.A., Mazepa R.B. Globalnye sputnikovye sistemy sinkhronizatsii i upravleniya v okolozemnom prostranstve (Global satellite system synchronization and control in near-Earth space), Moscow, Vuzovskaya kniga, 2012, 188 p.
- Kazantsev M.Yu., Fateev Yu.L. Elektronnyi zhurnal «Radioelektronika», 2002, no. 12, available at: http://jre.cplire.ru/jre/dec02/6/text.html
- «International GNSS Service (IGS)», available at: http:/ /igscb.jpl.nasa.gov
- Vovasov V.E., Ipkaev N.B. Raketno-kosmicheskoe priborostroenie i informacionnye systemy, Moscow, 2014, vol. 1, no. 2, pp. 1-8.
- Rossiiskaya sistema differentsialnoi korrektsii i monitoringa (SDKM), available at: http://sdcm.ru
mai.ru — informational site of MAI Copyright © 1994-2024 by MAI |