Aircraft pilots actual external field of vision charting technique

Aeronautical and Space-Rocket Engineering

Dynamics, ballistics, movement control of flying vehicles


Аuthors

Gelvig M. Y.

National Helicopter Center Mil & Kamov, 26/1, Garshina str., Tomilino, Moscow region, 140070, Russia

e-mail: mgelvig@mi-helicopter.ru

Abstract

An adequate external field of vision fr om the pilot's station is one of the topmost conditions of safe and comfortable aircraft control including a helicopter.

Explicit numerical values of vertical and horizontal vision angles from the main sighting point “C” are specified by regulatory documents, in particular by Aviation regulations (FAR-29). For clarity, the normative field of vision (FoV) is usually represented in the form of a chart  in rectangular axes, wh ere  и  are vertical and horizontal FoV angles respectively. The opening outlines should comply with normative chart as much as possible.

Currently used methods of view assessment, including a measuring method (natural and virtual with 3D model), are rather labor consuming, as they require human processing of measured data. Besides, with the initial data change, such as main sighting point “C” position, all the measurements must be repeated.

The author has developed an interactive technique of structural FoV plotting by means of Siemens NX8.5 – the basic 3D CAD system of the company. However, structural FoV does not take account for pilot's head mobility and human vision binocularity. It results in overestimated, sometimes impracticable, requirements for geometry of cockpit openings.

As a continuation of the above said research, the development of plotting technique for so-called actual FoV, complied with Standard 1 00444-81 and with due account of the above mentioned factors, has been carried out.

This problem was also solved by graphical method with Siemens NX8.5 CAD in a similar way as structural FoV chart plotting. As a result, actual FoV chart in rectangular coordinates has been obtained. All plotting, like structural FoV, are fully associative. With input data change, the geometry is reshaped automatically.

The author also managed to solve the problem of normative actual field-of-vision boundaries on a crew compartment surface, based on reverse combination of projections and convolutions of normative FoV boundaries in rectangular coordinate system. This allows optimize the location and form of cockpit openings at early design stages.

Keywords:

field of vision plot, actual FoV, main sighting point, graphical plotting method, 3D CAD system

References

  1. Gelvig M.Yu. Vestnik Moskovskogo aviatsionnogo instituta, 2016, vol. 23, no. 3, pp. 129-135.

  2. Samolety i vertolety. Metody otsenki obzora iz kabiny. OST 1 00444-81 (Planes and helicopters. Methods of visibility evaluation from the cockpit. State Standart 1 00444-81), Moscow, Standarty, 1983, 12 p.

  3. Kabiny vertoletov. Razmery. OST 1 04019-83 (Cockpit of the helicopters. Dimensions. State Standart 1 04019-83), Moscow, Standarty, 1983, 6 p.

  4. Aviatsionnye pravila. Chast' 29. Normy letnoi godnosti vintokrylykh letatel'nykh apparatov transportnoi kategorii (Aviation rules. Part 29. Norms of airworthiness of rotorcraft transport category), Zhukovskiy, LII im. M.M. Gromova, 1995, 192 p.

  5. Rekomendatel'nyi tsirkulyar AS-29-2S. Vintokrylye LA transportnoi kategorii (Advisory circular AC-29-2C. Rotary wing transport category aircraft), Moscow, 2013,1144 p.

  6. Artamonov B.L., Moizykh E.I. Vestnik Moskovskogo aviatsionnogo instituta, 2009, vol. 16, no. 6, pp. 16-28.

  7. Stupakov G.P., Syrovatko V.G., Baluev O.T. Entsiklopedicheskii spravochnik po aviatsionnoi ergonomike i ekologii (Encyclopedic reference book on aviation ergonomics and ecology), Moscow, IP RAN, 1997, 512 p.

  8. Zinchenko V.P., Munipov V.M. Osnovy ergonomiki (Ergonomics basics), Moscow, MGU, 1979, 316 p.

  9. Saloendy G. Handbook of human factors. New York, John Wiley& Sons Ltd, 1987, 192 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI