Parameters selection of space debris removal system with elastic elements by cable towing

Aeronautical and Space-Rocket Engineering

Design, construction and manufacturing of flying vehicles


DOI: 123123-123-12313

Аuthors

Aslanov V. S.*, Yudintsev V. V.**

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

*e-mail: aslanov_vs@mail.ru
**e-mail: yudintsev@gmail.com

Abstract

There are more than 1500 large artificial objects on the near-earth orbits, while only 7% of then are active spacecraft. The remaining objects are space debris. The greatest hazard is presented by the large space debris, such as non-functioning satellites, final stages of rocket carriers, staying on the orbit. Their destruction can lead to grave aftermath, since collision of such object with other the objects and fragments may lead to significant increase of the number of small debris, which, in its turn, can lead to impossibility of safe employing of some near-earth orbits. The space debris removal is one of topical problems, which humanity will have to solve in the nearest future.

A method of space debris removal, and transportation system parameters are determined in many ways by the properties of the garbage being removed. Objects capture and removal by tether systems is one of the prospective methods of large objects, such as non-functional satellites of rocket stages, removal from orbit. The removal of a non-functioning spacecraft with flexible elements herewith is a more complicated task, since the possibility of oscillations of elastic structural elements, such as solar batteries panels should be accounted for, which may lead to their destruction and greater clogging of near earth space.

The article considers cable transportation of a large-sized object of space debris with elastic elements, such as solar batteries. The goal of the work consists in studying the mutual effect of tether oscillations and oscillations of flexible elements while transportation active phase. The article presents the developed mathematical model of the system, consisting of space tug and towed space debris with flexible elements. It considers the simplest case when only a constant thrust force effects the tug. No other forces and moments (such as gravitational) are accounted for.

The transported space debris should not be destroyed while towing, and its attached elements (solar batteries) should not tear away. Otherwise, it may lead to greater clogging of space. To analyze the possibility of destruction and selection of such system parameters that will exclude the space debris structure destruction, mathematical model was developed. By dint of this model, the analytical expressions allowing select the tether rigidity depending on parameters of space debris and mass of the tug were obtained. The article demonstrates the existence of critical tether rigidity, that should be avoided while transportation system parameters forming. Direct numerical integrating of the initial equations of the motion substantiated all analytical and numerical results presented in the article.

Keywords:

space debris, tether, space tug, flexible elements, oscillations

References

  1. Kessler D.J., Cour-Palais B.G. Collision frequency of artificial satellites: the creation of a debris belt. Journal of geophysical research, 1978, vol. 83, pp. 2637-2646.

  2. Usovik I.V., Darnopykh V.V., Malyshev V.V. Vestnik Moskovskogo aviatsionnogo instituta, 2015, vol. 22, no. 3, pp. 54-62. DOI: 10.1029/JA083iA06p02637

  3. Pardini C., Anselmo L. Evolution of the debris cloud generated by the Fengyun-1C fragmentation event. Proceedings of the 20th ISSFD, held in Annapolis (MD) on 24-28 September 2007 (NASA CP-2007-214158).

  4. Johnson N.L. Orbital debris: the growing threat to space operations. 33rd Annual AAS Guidance and Control Conference, Breckenridge, 2010, 9 p.

  5. Oleinikov I.I., Pavlov V.P. Vestnik Moskovskogo aviatsionnogo instituta, 2014, vol. 21, no. 2, pp. 41-48.

  6. Bonnal C., Ruault J.M., Desjean M.C. Active debris removal: Recent progress and current trends. Acta Astronautica, 2013, vol. 85, pp. 51-60. DOI: 10.1016/j.actaastro.2012.11.009

  7. Gougnet G., Alary D., Gerber D., Utzmann J., Wagner A. The debritor: an “off the shelf” based multimission vehicle for large space debris removal. 63rd International Astronautical Congress, 1–5 October 2012, Naples, Italy, IAC-12-A6.7.7

  8. Dafu X., Xianren K. Tether modeling study on electro-dynamic tether deorbiting system. Acta Aeronautica et Astronautica Sinica, 2008, vol. 5, 18 p.

  9. Forward R.L., Hoyt R.P., Uphoff C.W. Terminator Tether: A Spacecraft Deorbit Device. Journal of spacecraft and rockets, 2000, vol. 37, no 2, pp. 187–196.

  10. Iess L., Bruno C., Ulivieri C., Ponzi U., Parisse M., Laneve G. Satellite deorbiting by means of electrodynamics tethers. Part I General concepts and requirements. Acta Astronaut, 2002, vol. 50, pp. 399–406.

  11. Kitamura S., Hayakawa Y., Kawamoto S. A reorbiter for large GEO debris objects using ion beam irradiation. Acta Astronautica, 2014, vol. 94, no. 2, pp. 725–735.

  12. Jasper L., Schaub H., Seubert C., Trushlyakov V., Yutkin E. Tethered tug for large low earth orbit debris removal. AAS/AIAA Astrodynamics Specialists Conference, Charleston, 2012, 20 p.

  13. Jasper L., Schaub H. Input shaped large thrust maneuver with a tethered debris object. Acta Astronautica, 2014, vol. 96, pp. 128–137. DOI: 10.1016/j.actaastro.2013.11.005

  14. Jasper L., Schaub H. Discretized input shaping for a large thrust tethered debris object. AAS/AIAA Spaceflight Mechanics Meeting, Santa Fe, New Mexico, 2014, 20 p.

  15. Aslanov V.S., Alekseev A.V., Ledkov A.S. Trudy MAI, 2016, no. 90, available at: http://trudymai.ru/eng/published.php?ID=74644&eng=Y

  16. Aslanov V.S., Pikalov R.S. Trudy MAI, 2017, no. 92, available at: http://trudymai.ru/eng/published.php?ID=76750&eng=Y

  17. Aslanov V.S., Yudintsev V.V. Dynamics of large space debris removal using tethered space tug. Acta Astronautica, 2013, vol. 91, pp. 149–156. DOI: 10.1016/j.actaastro.2013.05.020

  18. Aslanov V.S., Yudintsev V.V. Dynamics of Large Debris Connected to Space Tug by a Tether. Journal of Guidance, Control, and Dynamics, 2013, vol. 36, pp. 1654–1660. DOI: 10.2514/1.60976

  19. Aslanov V.S., Ledkov A.S. Dynamics of towed large space debris taking into account atmospheric disturbance. Acta Mechanica, 2014, vol. 225, no. 9, pp. 2685–2697. DOI: 10.1007/s00707-014-1094-4

  20. Kelly S.G. Fundamentals of mechanical vibrations. McGraw-Hill, 2000, 2-nd edition, 672 p.

  21. Korn G., Korn T. Mathematical handbook for scientists and engineers: definitions, theorems, and formulas for reference and review. General Publishing Company, 2000, 1151 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI