Impact evaluation of multi-propeller wing blow-over system on the stol aircraft characteristics

Aeronautical and Space-Rocket Engineering

Design, construction and manufacturing of flying vehicles


Аuthors

Egoshin S. F.

Central Aerohydrodynamic Institute named after N.E. Zhukovsky (TsAGI), 1, Zhukovsky str., Zhukovsky, Moscow Region, 140180, Russia

e-mail: sergey4791@yandex.ru

Abstract

The article undertook the attempt to obtain an analytical solution to compute the take-off length of an aircraft equipped with the multi-propeller wing blow-over installation, and estimate the benefits of such engineering decision through the transport operation evaluation of this aircraft.

The main difficulty of this problem lies in the fact that the wing and propeller interaction is an extremely complex and insufficiently studied task. Currently, only approximate semi-empirical formulas for calculating the aerodynamic characteristics of the wing at small relative diameters of the blowing airscrew exist. The exact calculation of the wing flow-around in this case is possible only for strictly specified, nonparametric configurations using the finite-difference method.

In addition, the current complicated situation in the sphere of local air transport in Russia (reduction of airlines and operating airfields) requires the search and evaluation of effective technical solutions for a prospective aircraft of local airlines. One of the ways is envisaged as developing a short takeoff and landing (STOL) aircraft capable of carrying out transport operations in conditions of an underdeveloped airfield infrastructure. It is considered that equipping such a STOL airplane with a multi-propeller electrically powered blow-over system will be an effective solution to the problem. However, the above said complex aerodynamic task does not allow a quick search for the optimal characteristics of this aircraft.

The developed mathematical model, under certain constraints, allows obtain an evaluative analytical solution for the take-off run length of such STOL aircraft, reveal the specifics of parameters interaction and evaluate possible advantages and disadvantages of the aircraft. Within the framework of the model, it was demonstrated that the maximum possible power consumption from the main engines is the optimal value of the corresponding parameter of the electric power plant. The amount of this power consumption determines the blown part of the wing area through the relationship with the critical rotation speed of the auxiliary propellers.

As for performance of a transport STOL aircraft based on L-410, it was shown that a blow-over system based on conventional electrotechnical materials can reduce the take-off run by 30% (up to 300 m), while reducing the payload by 1520% at flight ranges up to 300 km or up to 50% when flying to the maximum range. At the same time, if the electric power plant is designed based on high-temperature superconductors (HTSC), the payload reduction will be much less: negligible at flight distances up to 300 km or about 25% with flight to the maximum range. This allows conclude that the HTSC technology application for such STOL aircraft creation is rather promising.

Keywords:

rotor wing blow-off, short takeoff and landing (STOL) aircraft, local airlines, high-temperature superconductors

References

  1. Yuriev B.N. Vozdushnye vinty (Propellers), Moscow, Mosmashmetizdat, 1983, 400 p.

  2. Korovin A.Ye., Novikov Yu.F. Prakticheskaya aerodinamika i dinamika poleta samoletov Yak-52 i Yak-55 (Practical aerodynamics and flight dynamics of aircraft Yak-52 and Yak-55 airplanes), Moscow, DOSAAF, 1989, 357 p.

  3. Breguet 941, available at: http://www.airwar.ru/enc/craft/br941.html

  4. Alba C., Elham A., German B.J., Veldhuis L.L.M. A surrogate-based multi-disciplinary design optimization framework modeling wing-propeller interaction. Aerospace Science and Technology, 2018, vol. 78, pp. 721-733. DOI: 10.1016/j.ast.2018.05.002

  5. Della Vecchia P., Malgieri D., Nicolosi F., De Marco A. Numerical analysis of propeller effects on wing aerodynamic: tip mounted and distributed propulsion. Transportation Research Procedia, 2018, vol. 29, pp. 106-115. DOI: 10.1016/j.trpro.2018.02.010

  6. Dunaevskii A.I., Chernavskikh Yu.N. Materialy XXVIII nauchno-tekhnicheskoy konferentsii po aerodinamike, TsAGI im. Prof. N.E. Zhukovskogo, 2017, p. 120.

  7. Mikhaylov Yu.S., Petrov A.V., Pigusov E.A., Chernousov V.I., Kishalov A.I., Biryuk V.I., Tuntsev V.A. Materialy XXV nauchno-tekhnicheskoy konferentsii po aerodinamike, TsAGI im. N.E. Zhukovskogo, 2014, pp. 192-194.

  8. Bobrik A.A., Tkachenko A.Yu., Kuz'michev V.S., Manuylov V.A. Aviatsiya i kosmonavtika-2017. Sbornik tezisov konferentsii, 2018, pp. 81-82.

  9. Manvelidze A.B. Vestnik Moskovskogo aviatsionnogo instituta, 2017, vol. 24, no. 4, pp. 226-234.

  10. Klochkov V.V., Rozhdestvenskaya S.M., Fridlyand A.A. Nauchnyy vestnik GosNII GA, 2018, no. 20(331), pp. 93-102.

  11. Egoshin S.F., Smirnov A.V. Tekhnika vozdushnogo flota, 2017, vol. XCI, no. 4(729), pp. 20-29.

  12. Katalog aviatsionnykh izdeliy i system. Tom 2. Dvigateli. Vinty. Elementy transmissiy (Directory of aviation products and systems. Vol. 2 “Engines. Screws. Transmission elements”), Moscow, Aerosfera, 2007, 328 p.

  13. Samolet An-24, tekhnicheskoe opisanie. Kniga 1: letno-tekhnicheskie kharakteristiki samoleta (The plane An-24 technical description. Book 1 “Flight characteristics of the aircraft”), Moscow, Mashinostroenie, 1968, 75 p.

  14. Kurochkin F.P. Osnovy proektirovaniya samoletov s vertikal'nym vzletom i posadkoy (Fundamentals of aircraft with vertical takeoff and landing designing), Moscow, Mashinostroenie, 1970, 253 p.

  15. Anipko O.B., Loginov V.V. Sbornik nauchnykh trudov Khar'kovskogo universiteta Vozdushnykh sil im. I. Kozheduba, 2008, no. 1(16), pp. 12-14.

  16. Dwight H.B. Tables of integrals and other mathematical data (Tables of integrals and other mathematical formulas), Moscow, Nauka, 1977, 224 p.

  17. Lazarev V.V. Kontseptual'noe proektirovanie samoleta (Conceptual design of the aircraft), Moscow, MAI, 2012, 98 p.

  18. Vislenev B.V., Kuz'menko D.V. Teoriya aviatsii (Theory of aviation), Moscow, GVI Narkomata oborony SSSR, 1939, 384 p.

  19. Seriynoe proizvodstvo L-410 v Rossii: samolet poletit s otechestvennoy nachinkoy (Serial production of L-410 in Russia: the plane will fly with the domestic “filling”), available at: https://politexpert.net/82970-seriinoe-proizvodstvo-l-410-v-rossii-samolet-poletit-s-otechestvennoi-nachinkoi

  20. Rukovodstvo po letnoy ekspluatatsii samoleta L-410 UVP-E. Kniga pervaya (The flight manual of the aircraft L-410 UVP-E. The first Book), Moscow, Ministerstvo GA SSSR, 1985, 316 p.

  21. Kovalev A.I. Samolet L-410: konstruktsiya i letnaya ekspluatatsiya (Aircraft L-410: design and flight operation), Moscow, Transport, 1988, 86 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI