Formation, structure and magnetic properties of nanocomposites obtained by Fe(III)Co(II) cocrystallized complexes thermal decomposition

Metallurgy and Material Science

Material science


Аuthors

Aydemir T. 1*, Golubeva N. D.2, Shershneva I. N.2**, Kydralieva K. A.1***, Dzhardimalieva G. I.2****

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. Institute of Problems of Chemical Physics of the Russian Academy of Sciences, IPCP RAS, 1, Academician Semenov av., Chernogolovka, Moscow region, 142432, Russia

*e-mail: rumit@live.ru
**e-mail: sheri@icp.ac.ru
***e-mail: k_kamila@mai.ru
****e-mail: dzhardim@icp.ac.ru

Abstract

Considerable interest in d-elements nanoparticles well as the possibility of creating magnetic carrier with is stipulated by their magnetic properties specifics, as high information recording density on their basis.

Magnetic particles are widely used in biomedicine, and ferrous oxides (magnetite and maghemite), possessing high biocompatibility, play exceptionally significant role. Iron- and cobalt-containing particles are characterized by high values of coercive force and magnetic susceptibility. For example, for magnetite Fe3O4, the saturation magnetization (δs, Ms) is 92 eme⋅g-1, and for γ-Fe2O3-74 eme⋅g-1, the coercive force magnitude for anisotropic nanoparticles of the latter ranges from 200 to 400 Oe.

The structure and properties of metal-containing nanocomposites obtained while thermal transformations of Fe (III) Co (Il)-acrylate complexes were studied in this article.

It was shown that thermal transformations of the complexes under study included the stages of dehydration, solid phase polymerization and decarboxylation of the forming metal polymer. The solid phase product of the complexes thermal transformation are metal-containing nanoparticles, stabilized by carbonized polymer matrix. The crystalline nanostructured phases are Fe3O4, CoFe2O4 and CoO. The average crystallite size is 10 nm. Magnetic properties of the obtained nanocomposites also were studied. Hysteresis loops measured at temperatures below 200 K are open and displaced to a negative field. The coercive force and residual magnetization are 0.18 T and 15.5 mT, respectively.

An original approach consisting in combining nano-size metal particles synthesis with its stabilizing polymeric shell in situ was developed. The approach is based on metal containing monomers homo- and copolymerization in the solid phase with subsequent controlled thermolysis of the formed metall-polymers.

Accordingly, matrix-stabilized metal oxide nanoparticles were obtained by the method of polymer-mediated synthesis. In the nanocomposite obtained at 643 K and conversion of Δ m = 42%, the crystalline phase contains nanoparticles of ferromagnetic oxides Fe3O4 and CoFe2O4, and CoO antiferromagnetic nanoparticles. The nanocomposite microstructure includes polycrystalline agglomerates with sizes of 30 nm, consisting of individual nanocrystallites with an average size of 10 nm. The magnetic properties of the obtained products depend on the nature of the components, the temperature and the magnitude of the applied magnetic field. The coercive force and residual magnetization at room temperature are 0.18 T and 15.5 mT, respectively. The strong dependence of the magnetic characteristics on the phase composition, temperature, and magnetic field suggests that nanocomposites of this type are of interest for the sensor materials production for aerospace and biomedical applications.

Keywords:

nanocomposites, metal polymers, polymerization, thermolysis, acrylates, interpolymerization

References

  1. Lagar’kov A.N., Pogosyan M.A. Vestnik Rossiiskoi Akademii nauk, 2003, vol. 73, no. 9, pp. 779-787.

  2. Pomogailo A.D., Rozenberg A.S., Uflyand I.E. Nanochastitsy metallov v polimerakh (Metals in polymers nanoparticles), Moscow, Khimiya, 2000, 672 p.

  3. Pomogailo A.D., Kestelman V.N. Metallopolymer Nanocomposites. Berlin, Springer Heidelberg, 2005, 563 p.

  4. Bychkov A.N., Fetisov G.P., Kydralieva K.A., Sokolov E.A., Dzhardimalieva G.I. Nanocomposite materials based on metallic nanoparticles and thermoplastic polymer matrices: production and properties. Aerospace MAI Journal, 2017, vol. 24, no. 2, pp. 209-222.

  5. Pomogailo D.A., Spirin M.G., Skobeeva V.M., Dzhardimalieva G.I., Smyntyna V.A. Spectral- luminescent properties of CdS nanocomposites in a polymer shell. Aerospace MAI Journal, 2015, vol. 22, no. 2, pp. 170-177.

  6. Morokhov I.D., Trusov L.I., Lapovik V.I. Fizicheskie yavleniya v ul’tradispersnykh metallicheskikh sredakh (Physical phenomena in ultrafine metallic media), Moscow, Ehnergoatomizdat, 1984, 224 p.

  7. Petrov Yu.I. Klastery i malye chastitsy (Clusters and small particles), Moscow, Nauka, 1986, 368 p.

  8. Rozenberg A.S., Dzhardimalieva G.I., Pomogailo A.D. Doklady Akademii Nauk, 1997, vol. 356, no. 1, pp. 66-69.

  9. Rozenberg A.S., Dzhardimalieva G.I., Pomogailo A.D. Polymer Composites of Nano-sized Particles Isolated in Matrix. Polymers for Advanced Technologies, 1998, no. 9, pp. 527-535. DOI:10.1002/(SICI)1099-1581(199808)9:8<527::AID-PAT802>3.0.CO;2-Z

  10. Semenov S.A., Drobot D.V., Musatova V.Yu., Pronin A.S., Pomogailo A.D., Dzhardimalieva G.I., Popenko V.I. Synthesis and thermal conversions of unsaturated cobalt(II) dicarboxylates as precursors of metallopolymer nanocomposites. Russian Journal of Inorganic Chemistry, 2015, vol. 60, no.8, pp. 897-905.

  11. Pomogailo A.D., Dzhardimalieva G.I., Pomogailo S.I., Golubeva N.D., Shilov G.V., Dzhavadyan E.A., Bur- lov A.S., Mashchenko S.A., Garnovskii D.A. Synthesis and reactivity of metal-containing monomers 76. Nanostructured materials obtained by controlled thermolysis of Ni, Co, and Cu chelate complexes with azomethine ligands. Russian Chemical Bulletin, 2016, vol. 65, no. 1, pp. 139-150.

  12. Gubin S.P., Koksharov Yu.A., Khomutov G.B., Yurkov G.Yu. Magnetic nanoparticles: preparation, structure and properties. Russian Chemical Reviews, 2005, vol. 74, no. 6, pp. 489-520. DOI: 10.1070/ RC2005v074n06 ABEH000897

  13. Sellmyer D.J., Yu M., Kirby R.D. Nanostructured magnetic films for extremely high density recording. Nanostructured Materials, 1999, vol. 12, no. 5-8, pp. 1021-1026. DOI: 10.1016/S0965-9773(99)00291-3

  14. Momet S., Vasseur S., Grasset F., Duguet E. Magnetic nanoparticle design for medical diagnosis and therapy. Journal of Materials Chemistry, 2004, no. 14, pp. 2161­–2175. DOI: 10.1039/B402025A

  15. Pankhurst Q.A., Connolly J., Jones S.K., Dobson J. Applications of magnetic nanoparticles in biomedicine. Journal of Physics D: Applied Physics, 2003, vol. 36, no. 13, pp. 167–181.

  16. Craik D.J. Magnetism: Principles and Applications, N.Y., John Wiley & Sons, 1995, 497 p.

  17. Jakubovics J.P. Magnetism and Magnetic Materials. 2nd ed. Leeds, United Kingdom, Maney Publishing, 1994, 144 p.

  18. Dzhardimalieva G.I., Pomogailo A.D., Ponomarev V.I., Atovmyan L.O., Shul’ga Yu.M., Starikov A.G. Izvestiya Akademii Nauk SSSR. Seriya khimicheskaya, 1988, no. 7, pp. 1525-1530.

  19. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, N.Y., Wiley & Sons, 1986, 484 p. DOI: 10.1002/bbpc.198800131

  20. Kodama R.H., Berkowitz A.E., McNiff E.J., Foner S. Surface spin disorder in NiFe2O4 nanoparticles. Physical Review Letters, 1996, vol. 77, no. 2, pp. 394–397. DOI: 10.1103/PhysRevLett.77.394

  21. Stukach A.V. Tekhniko-tekhnologicheskie problemy servisa, 2010, no. 3(13), pp. 10-19.

  22. Yakh’yaeva Kh.Sh., Magomedov G.M., Zadorina E.N. Izvestiya Dagestanskogo gosudarstvennogo pedagogicheskogo universiteta. Estestvennye i tochnye nauki, 2008, no. 1(2), pp. 7-10.

  23. Zimbitskii A.V., Stasyuk Yu.V. Nauchnyi vestnik MGTU GA, 2014, no. 208, pp. 99-103.

  24. Kumzerov Y., Vakhrushev S.I. Nanostructures Within Porous Materials. In: Encyclopedia of Nanoscience and Nanotechnology. American Scientific Publishers, 2003, vol. 7, pp. 811-849. URL: http://www.fulviofrisone.com/attachments/article/409/ENN-Vol%207%20nanomech-nanotub.pdf

  25. Samoilovich M.I. Nanomaterialy. T. 3 “Fotonnye kristally i nanokompozity na osnove opalovykh matrits” (Nanomaterials Vol. 3 “Photonic crystals and nanocomposites based on opal matrices”), Moscow, Tekhnomash, 2007, 303 p.

  26. Suzdalev I.P., Maksimov Yu.V., Imshennik V.K. Rossiiskie nanotekhnologii, 2006, vol. 1, no. 1–2, pp. 134-141.

  27. Ghandoor H.E., Zidan H.M., Khalil M.M.H., Ismail M.I.M. Synthesis and Some Physical Properties of Magnetite (Fe3O4) Nanoparticles. International Journal of Electrochemical Science, 2012, vol. 7, no. 6, pp. 5734-5745.

  28. Lin Y., Yang H., Zhu J., Wang F. Magnetic and Dielectric Properties of YIG/HDPE Composites for High-Frequency Applications. International Journal of Polymers Materials and Polymeric Biomaterials, 2010, vol. 59, no. 8, pp. 570-576. DOI: 10.1080/ 00914031003760675

  29. Rao P.B.C., Setty S.P. Electrical properties of Ni-Zn nanoferrite particles. International Journal of Engineering Science and Technology, 2010, vol. 2, no. 8, pp. 3351-3354.

  30. Babayan V., Kazantseva N.E., Moucka R., Sapurina I., Spivak Yu.M., Moshnikov V.A. Combined effect of demagnetizing field and induced magnetic anisotropy on the magnetic properties of manganese-zinc ferrite composites. Journal of Magnetism and Magnetic materials, 2012, vol. 324, no. 2, pp. 161-172. DOI: 10.1016/j.jmmm.2011.08.002

  31. Ohnuma S., Fujimori H., Masumoto T., Xiong X.Y., Ping D.H., Hono K. FeCo-Zr-O nanogranular soft- magnetic thin films with a high magnetic flux density. Applied Physics Letters, 2003, vol. 82, no. 6, pp. 946-948. DOI: 10.1063/1.1537456

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI