Numerical study of total pressure in the air intake with sharp edges applying eddy-resolving sbes-method

Aeronautical and Space-Rocket Engineering

Aerodynamics and heat-exchange processes in flying vehicles


Аuthors

Novogorodtsev E. V.

Central Aerohydrodynamic Institute named after N.E. Zhukovsky (TsAGI), 1, Zhukovsky str., Zhukovsky, Moscow Region, 140180, Russia

e-mail: novogorodtseve91@mail.ru

Abstract

The values of the total pressure oscillations intensity root mean square parameter ε in the channel of isolated air intake with sharp edges were determined as applied to industrial aerodynamics problems based on numerical solution of Navier-Stockes system of equations. Numerical solutions of Navier-Stockes system of equations were obtained using eddy­resolving Stress Bkended Eddy Simulation (SBES) approach employing ANSYS CFX solver. Simulation of the 3D flowing of the viscous compressible gas around and inside the object was performed employing spatial regular multi-shell grid. The procedure of computational grid generation was being performed in manual mode employing ICEM CFD software.

To evaluate fidelity of the computational study based on SBES method application, comparison of the obtained values of the root-mean square parameter of pulsations intensity with experimental data was performed. The data processing procedure herewith was conducted in concordance with the standard experimental technique approved in TsAGI.

Numerical simulation results are presented in the form of plots of parameter e values in the engine section as a function of the specific reduced air flow q(λen) through the engine cross section. The air intake duct throttling was modelled by cross-clamping of the auxiliary duct in the form Laval nozzle. The auxiliary duct wall profile in the longitudinal section herewith was constructed using the Vitoshinsky formula.

The article performed a comparison of total pressure oscillations obtained while computational study in monitored points of the metering cross­section with oscillograms obtained while experimental study according to readings of the total pressure pulsations sensors, installed on the model at the same points of the reference cross-section.

The parameter ε values obtained in the framework of this work in the engine cross-section for the air intake and engine synchronization mode in all regarded range of of the incoming flow Mach numbers M = 0-1.8 (at zero angles of attack and sideslip) are in good agreement with the experimental data. Maximum discrepancy between computational and experimental results was Δε max = 1% in absolute units of the ε parameter.

The ε parameter values were obtained for both the air intake configuration without a boundary layer control system, and the one with a boundary layer control system.

Keywords:

numerical simulation, air intake with sharp edges, integral non-uniformity parameter of the total pressure field, root-mean-square parameter of the total pressure pulsating intensity

References

  1. Vasil’ev V.I., Ivanyushkin A.K., Pavlyukov E.V., Sokolov V.D. Aerodinamika, ustoichivost’ i upravlyaemost’ sverkhzvukovykh samoletov, Moscow, Nauka, 1998, pp. 237-308.

  2. Pirogov S.Yu., Yuriev A.S., Tipayev V.V., Makhrov A.S. A numerical stream simulation for external- compression inlet with energy supply into incoming supersonic flow. Aerospace MAI Journal, 2009, vol. 16, no. 3, pp. 154-159.

  3. Hemsch M.J., Nielsen J.N. Tactical Missile Aerodynamics. Amer Inst of Aeronautics, 1986, 858 p.

  4. Abramovich G.N. Prikladnaya gazovaya dinamika (Applied gas dynamics), Moscow, Nauka, 1991, (600+304) p.

  5. Nikol’skii A.A. Doklady Akademii nauk SSSR, 1957, vol. 116, no. 2, pp. 193-196.

  6. Molchanov A.M. A calculation of supersonic non­isobaric jets with compressibility corrections in a turbulence model. Aerospace MAI Journal, 2009, vol. 16, no. 1, pp. 38-48.

  7. Kuznetsov E.N., Lunin V.Yu., Panyushkin A.V., Chernyshev I.L. Boundaries of non-separation flow- around of bodies of rotation, with the nose part in the form of Riabouchinsky half-cavity. Aerospace MAI Journal, 2018, vol. 25, no. 4, pp. 7-15.

  8. Vinogradov V.A., Mel’nikov Ya.A., Stepanov V.A. Uchenye Zapiski TsAGI, 2015, vol. XLVI, no. 2, pp. 26-40.

  9. Efimov R.A., Karpov E.V., Novogorodtsev E.V. Materiavly XXV nauchno-tekhnicheskoi konferentsii po aerodinamike (p. Volodarskogo, 27-28 February 2014), Zhukovskii, TsAGI im. prof. N.E. Zhukovskogo, 2014, pp. 133-134.

  10. Karpov E.V., Novogorodtsev E.V. Materiavly Moskovskoi molodezhnoi nauchno-prakticheskoi konferentsii (22-24 April 2014, MAI) “Innovatsii v aviatsii i kosmonavtike – 2014”, Moscow, Print-salon, 2014, pp. 51-52.

  11. Karpov E.V., Novogorodtsev E.V. Materiavly 13 Mezhdunarodnoi konferentsii (17-21 November 2014, MAI) “Aviatsiya i kosmonavtika – 2014”, St. Petersburg, Masterskaya pechati, 2014, pp. 64-66.

  12. Karpov E.V., Novogorodtsev E.V. Materiavly XXVI nauchno-tekhnicheskoi konferentsii po aerodinamike (p. Volodarskogo, 26-27 February 2015), Zhukovskii, TsAGI im. prof. N.E. Zhukovskogo, 2015, pp. 131-132.

  13. Karpov E.V., Novogorodtsev E.V. Materiavly XXVIII nauchno-tekhnicheskoi konferentsii po aerodinamike (p. Volodarskogo, 20-21 April 2017), Zhukovskii, TsAGI im. prof. N.E. Zhukovskogo, 2017, pp. 139-140.

  14. Menter F.R. Zonal two-equation k- ω turbulence models for aerodynamic flows. 24th AIAA Fluid Dynamics Conference (6-9 July 1993; Orlando, FL; United States). AIAA Paper 1993-2096. DOI: 10.2514/ 6.1993-2906

  15. Garbaruk A.V., Strelets M.Kh., Shur M.L. Modelirovanie turbulentnosti v raschetakh slozhnykh techenii (Simulation of turbulence in calculation of complex flows), St. Petersburg, Politekhnicheskii universitet, 2012, 88 p.

  16. Forsythe J.R., Squires K., Wurtzler K.E., Spalart P.R. Detached-eddy simulation of fighter aircraft at high alpha. 40th AIAA Aerospace Sciences Meeting and Exhibit (14-17 January 2002; Reno, NV, United States). AIAA Paper 2002-0591. DOI: 10.2514/6.2002-591

  17. Strelets M. Detached eddy simulation of massively separated flows. 39th AIAA Aerospace Sciences Meeting and Exhibit (8-11 January 2001; Reno, NV United States). AIAA Paper 2001-0879. DOI: 10.2514/6.2001- 879

  18. Lyubimov D.A. Teplofizika vysokikh temperature, 2010, vol. 48, no. 2, pp. 279-289.

  19. Lyubimov D.A. Potekhina I.V. Materiavly 14 Mezhdunarodnoi shkoly-seminara (June 2014, Evpatoriya) “Modeli i metody aerodinamiki”, Moscow, MTsNMO, 2014, pp. 101-102.

  20. Berens T.M., Delot A.-L., Tormalm M.H., Ruiz- Calavera L.-P., Funes-Sebastian D.-E., Rein M., Sflterskog M., Ceresola N., Zurawski, L. Numerical and Experimental Investigations on Highly Integrated Subsonic Air Intakes. AIAA Science and Technology Forum and Exposition (13-17 January 2014; National Harbor, MD, USA). AIAA-2014-0722. DOI: 10.2514/ 6.2014-0722

  21. Delot A.-L., Berens T.M., Tormalm M.H., Säterskog M., Ceresola N. DES Computations for a Subsonic UAV Configuration with a Highly Integrated S-Shaped Intake Duct. AIAA Science and Technology Forum and Exposition (13-17 January 2014; National Harbor, MD, USA). AIAA-2014-0723. DOI: 10.2514/6.2014-0723

  22. MacManus D.G., Chiereghin N., Prieto D.G., Zachos P. Complex aero-engine intake ducts and dynamic distortion. AIAA Journal, 2017, vol. 55, no. 7, pp. 2395-2409. DOI: 10.2514/1.J054905

  23. Description of Ansys software products. Program of numerical calculation Ansys CFX. URL: https://www.ansys.com/search?keyword=Ansys%20CFX

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI