Aircraft break wheels designing using 1D thermodynamic models

Aeronautical and Space-Rocket Engineering

Design, construction and manufacturing of flying vehicles


Аuthors

Levin V. I.1*, Karasev D. Y.2**, Sitnikov M. S.2***

1. Aviation Corporation “RUBIN”, 5, Entuziastov shosse, Zapadnaya promzona, Balashikha, Moscow Region, 143912, Russia
2. Siemens Industry Software, SISW, 9, B. Tatarskaya str, Moscow, 115184, Russia

*e-mail: v_levin47@yandex.ru
**e-mail: Kdu@mail.ru
***e-mail: M_s_sitnikov@mail.ru

Abstract

The OEM, EASA and ICAO requirements to aircraft systems and equipment force manufacturers to conduct more verification calculations and tests to confirm the announced characteristics, as well as analysis of various modes of operation. Currently, there are already new methods of design, as well as automation of calculations and tests. Thus, it is necessary to develop both theoretical and practical basis for their implementation.

The objectives of this work consist in determining a convenient method for thermal processes computing in the the aircraft wheel structure, as well as describing a method for developing a 1D model for the wheel thermodynamic calculations, performing computations by this model, and comparing the obtained results with the results of test modes.

The article provides a summary of the research and work conducted at the enterprise of the brake wheels manufacturing company. The approach to computing the thermal energy distribution dynamics over the friction disk volume and the wheel structure while braking process is being substantiated. The adequate accuracy while using the reduced model of the disks temperature computing is demonstrated. The article presents the processes and methodology issues of developing architecture and parameterization of the wheel structure model for computing the points of the monitored temperature. The model additionally accounts for the convective thermal exchange with the pneumatic network of the air cooling from the brake wheel. Speed, direction and successive air heating are also being accounted for. The results of computing and testing at three test modes are presented. The adequate accuracy of the computational results compared to the testing data is being determined.

Eventually, all declared goals were achieved. A convenient method for thermodynamics computing of the wheel based on the 1D model was determined. Virtual testing was performed on both a model and a test bench. Analysis of the results allows stating the expediency of the 1D models while brake wheels designing.

Virtual tests were performed on the developed and validated model, which allowed determine more optimal modes of the test bench equipment application. This, in its turn, allowed the time reduction of the field tests and the number of test launches.

Currently, a set of documentation has been developed to justify changes in the regulations for the design and conduct of accelerated life tests of the wheels. The prospects for the used computing method development for solving the related tasks of the break wheels design.

Keywords:

brake wheel, friction disc, air cooling, thermodynamic model, braking energy

References

  1. Simcenter Amesim, https://en.wikipedia.org/wiki/Simcenter_Amesim

  2. European Aviation Safety Agency (EASA), 2008. Recearch Project 2008. Vol. 4, https://www.easa.europa.eu/sites/default/files/dfu/Report%20Volume%204%20-%20Operational%20friction% 20and%20RCR.pdf

  3. Oleinikov V.I., Georgiev A.F., Sitnikov M.S. Aviasoyuz, 2017, no. 3/4(66), pp. 20-22. URL: http://www.aviasouz.com/66.pdf

  4. Kokonin S.S., Kramarenko E.I., Matveenko A.M. Osnovy proektirovaniya aviatsionnykh koles i tormoznykh sistem (Design basics of aircraft wheel and brake systems), Moscow, MAI, 2007, 263 p.

  5. Daidzic N.E. Modeling and Computation of the Maximum Braking Energy Speed for Transport Category Airplanes. Journal of Aviation Technology and Engineering, 2017, vol. 6, no. 2, pp. 2–25. DOI: 10.7771/2159-6670.1154

  6. Chichinadze A.V., Braun E.D., Bushe N.A. et al. Osnovy tribologii: trenie, iznos, smazka (Tribology fundamentals: friction, wear, lubrication), Moscow, Mashinostroenie, 2001, 664 p.

  7. Chichinadze A.V., Albagachiev A.Y., Kozhemyakina V.D., Kokonin S.S., Suvorov A.V., Kulakov V.V. Assessment of friction and wear characteristics of domestic friction composite materials in loaded aircraft brakes. Journal of Friction and Wear, 2009, vol. 30, no. 4, pp. 261-270.

  8. Kramarenko E.I., Kulakov V.V., Kenigfest A.M., Lisovskii S.A., Mozalev V.V. Trenie i iznos, 2006, vol. 27, no. 3, pp. 290-298.

  9. Bond graph, https://en.wikipedia.org/wiki/Bond_graph

  10. Finite element method, https://en.wikipedia.org/wiki/Finite_element_method

  11. Vedanta S.T. Heat Transient Transfer Analysis of Brake Disc/Pad System. 2016. Department of Mechanical Engineering, Blekinge Institute of Technology, Karlskrona, Sweden. URL: http://www.diva-portal.org/smash/get/diva2:1049941/FULLTEXT02

  12. Anudeep B., Naga S.B. Design and couple field analysis of Aircraft disc brake rotor. International Journal of Engineering Research and General Science, 2015, vol. 3, no. 4, part 2, pp. 316-323. URL: http://pnrsolution.org/Datacenter/Vol3/Issue4/195.pdf

  13. Prabhu T.R. Airworthiness Certification of Fe-Si3N4- graphite Brake Composites for Military Aircraft. Tribology in Industry, 2015, vol. 37, no. 4, pp. 491-499. URL: http://www.tribology.rs/journals/2015/2015-4/13.pdf

  14. Gimadiev A.G., Greshnyakov P.I., Sinyakov A.F. LMS Imagine.Lab AMESim kak effektivnoe sredstvo modelirovaniya dinamicheskikh protsessov v mekhatronnykh sistemakh (LMS Imagine.Lab AMESim as an effective tool for dynamic processes modeling in mechatronic systems), Samara, SamNTs RAN, 2014, 138 p.

  15. Voronin A.V. Modelirovanie mekhatronnykh system (Modeling of mechatronic systems), Tomsk, Tomskogo politekhnicheskogo universiteta, 2008, 137 p.

  16. Nosko A.L., Mozalev V.V., Nosko A.P., Suvorov A.V., Lebedeva V.N. Calculation of temperature of carbon disks of aircraft brakes with account of heat exchange with the environment. Journal of Friction and Wear, 2012, vol. 33, no. 4, pp. 233-238.

  17. Ozherelkov D.Yu. Vyazkost’ razrusheniya uglerod- uglerodnykh kompozitsionnykh materialov friktsionnogo naznacheniya (Fracture Toughness of carbon-carbon composite materials of friction purposes). Doctor’s thesis. Moscow, MISIS, 2018, 126 p. URL: https://misis.ru/files/9282/Ojerelkov_dis.pdf

  18. Mikheev M.A., Mikheeva I.M. Osnovy teploperedachi (Fundamentals of heat transfer), Moscow, Energiya, 1973, 344 p.

  19. Lukanin V.N., Shatrov G.M. Teplotekhnika (Heat Engineering), Moscow, Vysshaya shkola, 2000, 671 p.

  20. Ghosh A.K., Mathur V. Aircraft Maintenance. Lecture 07 “Aircraft Brakes System”. Department of Aerospace Engineering Indian Institute of Technology, Kanpur. 2019. URL: http://textofvideo.nptel.ac.in/101104071/lec7.pdf

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI