Enhancement of the fuselage structure topological optimization technique in the large cutout zone

Aeronautical and Space-Rocket Engineering

Design, construction and manufacturing of flying vehicles


Аuthors

Boldyrev A. V.*, Pavel’chuk M. V.**, Sinel’nikova R. N.***

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

*e-mail: boldirev.av@ssau.ru
**e-mail: pmv90aircraft@gmail.com
***e-mail: kam.rn@yandex.ru

Abstract

Topological optimization techniques play an important role while selecting a structural layout of aggregates for a flying vehicle of minimal mass. The goal of the presented work consists in increasing weigh efficiency of the aircraft structure in the stresses concentration zones. The article proposes a of topological optimization method for edging of the cutout for the hatch in the fuselage, based on the full- stress concept with regard for the functional limitations on the generalized hull skin displacements at the cutout contour.

For the design object synthesis, a method, based on Komarov’s mathematical model of a deformable solid body with variable density is being applied. An artificial material with variable density and rigidity, called a “filler", in which the strength and elastic properties linearly depend on density, is being employed.

Finite element models, integrating the manifold of the load-bearing elements of the structure and continuous medium of variable density are being developed while topological design. Earlier, such combined model was employed in [25, 26]. The material distribution in the filler allows revealing theoretically optimal structure and, using the strategy [8], developing the structural layout closest to the theoretical solution from the viewpoint of its stressed operation. The topological optimization process is based on stage-by-stage substitution of the filler by structural elements, realizing the technical decisions being taken

The article presents a numerical example of the fuselage compartment design with rectangular cutout, demonstrating the operability of the suggested technique. Conventional layout with well-known prototypes technical solutions is adopted as an initial structure. The topological optimization resulted in obtaining new technical solution allowing 16,7% reduction in the mass of the strengthening members of the cutout relative to the initial structure. The parts of the internal panel are shifted inward the fuselage from its theoretical contour and duplicate the hull skin at the cutout portion. The internal panel is fixed to the hull skin by the longitudinal and sloped walls, reinforced and ordinary bulkheads. The manifold of stressed elements forms closed and hollow contours in the cutout corners, enhancing the structure rigidity in the hatch cutout zone in radial and longitudinal directions.

Keywords:

fuselage, hatch, structural layout, optimization, variable density body, strength, rigidity, generalized displacements, weight evaluation

References

  1. Dmitrieva V.G. et al. Problemy sozdaniya perspektivnoi aviatsionno-kosmicheskoi tekhniki (Problems of advanced aerospace technology creating), Moscow, Fizmatlit, 2005, 648 p.

  2. Pogosyan M.A., Liseitsev N.K., Ryabov V.A. Evolution of scientific foundations for aircraft design and problems of personal training. Aerospace MAI Journal, 2005, vol. 12, no. 2, pp. 5-9.

  3. Ser’eznov A.N. Polet, 2007, no. 1, pp. 17–23.

  4. Pen’kov E.A. Polet, 2007, no. 1, pp. 40-48.

  5. Endogur A.I., Pankevich A.A. Structures weight comparison of commercial aircraft with different aerodynamic schemes. Aerospace MAI Journal, 2010, vol. 17, no. 1, pp. 5-9.

  6. Komarov V.A. Ontologiya proektirovaniya, 2012, no. 3(5), pp. 8–23.

  7. Chernyshev S.L., Zichenkov M.Ch., Ishmuratov F.Z., Chedrik V.V. Chebyshevskii sbornik, 2017, vol. 18, no. 3(63), pp. 482-499. DOI: 10.22405/2226-8383-017- 18-3-488-505

  8. Komarov V.A. Aktual’nye problemy aviatsionnoi nauki i tekhniki. Sbornik statei, Moscow, Mashinostroenie, 1984, pp. 114-129.

  9. Bendsoe M.P., Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 1988, vol. 71, no. 2, pp. 197-224. DOI: 10.1016/0045-7825(88)90086-2

  10. Eschenauer H.A., Olhoff N. Topology optimization of continuum structures: A review. Applied Mechanics Reviews, 2001, vol. 54, no. 4, pp. 331-389. DOI: 10.1115/1.1388075

  11. Schuhmacher G., Stettner M., Zotemantel R., O’Leary O., Wagner M. Optimization assisted structural design of a new military transport aircraft. 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference (30 August - 1 September, Albany, New York, 2004), pp. 3803-3811. DOI: 10.2514/6.2004-4641

  12. Seeger J., Wolf K. Structural optimization of composite aircraft panels with large cutouts. VDI-Berichte/lst EUCOMAS, European Conference on Materials and Structures in Aerospace (26-27 May, Berlin, Germany 2008), no. 2028, pp. 19-27.

  13. Rozvany G.I.N. A critical review of established methods of structural topology optimization. Structural and Multidisciplinary Optimization, 2009, vol. 37, no. 3, pp. 217-237. DOI: 10.1007/s00158-007-0217-0

  14. Zhu J.H., Zhang W.H., Xia L. Topology optimization in aircraft and aerospace structures design. Archives of Computational Methods in Engineering, 2016, vol. 23, no. 4, pp. 595-622. DOI: 10.1007/s11831-015-9151-2

  15. Niu M.C.Y. Airframe Structural Design. Hong Kong, Conmilit Press Ltd, 1988, 612 p.

  16. Boldyrev A.V., Komarov V.A. Polet, 2016, no. 8-9, pp. 21-26.

  17. Komarov A.A. Osnovy proektirovaniya silovykh konstruktsii (Fundamentals of load-bearing structures design), Kuibyshev, Kuibyshevskoe knizhnoe izdatel’stvo, 1965, 88 p.

  18. Fleury C. A unified Approach to Structural Weight Minimization. Computer Methods in Applied Mechanics and Engineering, 1979, vol. 20, no. 1, pp. 17-38. DOI: 10.1016/0045-7825(79)90056-2

  19. Ivanova E.A., Matveev V.G., Peresypkin V.P. Sovremennye problemy informatiki, vychislitel’noi tekhniki i avtomatizatsii. Sbornik tezisov dokladov konferentsii, posvyashchennoi dnyu sovetskoi nauki, Gorkii, GGU, 1988, pp. 12-13.

  20. Lipin E.K., Chedrik V.V. Uchenye zapiski TsAGI, 1989, vol. 20, no. 4, pp. 73-83.

  21. Nikiforov A.K., Chedrik V.V. Uchenye zapiski TsAGI, 2007, vol. 38, no. 1-2, pp. 129-142.

  22. Boldyrev A.V. Wing structural optimization under strength and stiffness constrains. Aerospace MAT Journal, 2009, vol. 16, no. 3, pp. 15-21.

  23. Danilin A.I. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 2013, vol. 15, no. 6(3), pp. 647-653.

  24. Boldyrev A.V., Komarov V.A. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta, 2006, no. 1(9), pp. 42-47.

  25. Komarov V.A. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta, 2003, no. 1(3), pp. 24-37.

  26. Boldyrev A.V., Pavel’chuk M.V. Izvestiya Samarskogo nauchnogo tsentra RAN, 2013, vol. 15, no. 6(3), pp. 603-606.

  27. Anderson M.S., Arman Zh.-L., Arora Dzh.S. et al. Novye napravleniya optimizatsii v stroitel’nom proektirovanii (New areas of optimization in construction design), Moscow, Stroiizdat, 1989, 592 p.

  28. Rychkov S.P. MSC.visual Nastran dlya Windows (MSC.visual Nastran for Windows), Moscow, NT Press, 2004, 552 p.

  29. Boldyrev A.V. PNP_sr_solid. Svidetel’stvo RU 2019615390 o gosudarstvennoi registratsii programmy dlya EVM, 25.04.2019.

  30. Boldyrev A.V., Komarov V.A., Pavel’chuk M.V. Patent RU2646175 S1, 01.03.2018.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI