Aeronautical and Space-Rocket Engineering
Thermal engines, electric propulsion and power plants for flying vehicles
Аuthors
Moscow Automobile and Road Construction State Technical University (MADI), MADI, 64, Leningradsky Prospect, Moscow, 125319, Russia
e-mail: panam1@mail.ru
Abstract
The problems arising while improvement of any type of the internal combustion engine (ICE), such as reciprocating, rotary-piston, gas turbine or jet engines, are common for all of them.
The notions of the volumetric efficiency (nv) and residual gases (γr) traditionally used in the theory of piston internal-combustion engines do not allow characterize the air-fuel mixture composition, which defines the all power, economic and ecological indices of the engines. All the above-mentioned coefficients are applied only while the reciprocating ICE design. With this, the main indicator of pistons filling, namely volumetric efficiency, characterizes not so much the cylinders’ filling as its downgrade due to the presence of hydraulic resistances and incoming charge warming up. The essential drawback of all known equations for the volumetric efficiency determination is ignoring the impact of the fuel type, excess-air coefficient and recirculation’s degree on the cylinders filling. The general-technical concepts of (volume) fractions are far more informative. The aggregate of air-fuel mixture fractions determines its composition and thermodynamic characteristics values. The incoming charge (air) fraction allows unambiguous judgment on the degree of filling the whole cylinder volume, i.e. on the existing reserves of filling. Using the air or mixture volumetric fraction as the main filling indicator while piston ICE cycle computing allows accounting for the fuel molar weight and recirculation impact on the engine indices. As the result of the analysis, in order to account for the fuel impact on the filling the so-called “displacement coefficient” was proposed. Power and economic indices of the engine depend on this coefficient value. The value of this coefficient determines the degree of qualitative power regulation efficiency. Together with the recirculation degree, this coefficient determines the value of stoichiometric relationships and, thus, affects the indicator and effective indices of the engine.
As the sum of the fractions equals to the one, there is no necessity with the suggested approach in separate determining the fraction of the residue gases, since this fraction is equal to the difference between the one and the incoming charge fraction. The suggested approach is of prime importance while analyzing operating cycles of the engines operating on gaseous fuels, and on hydrogen in particular. As a result, the structure of the main calculation dependencies is simplified, and their analysis becomes more clearly evident and easy- to-understand. The possibility of the computing results visualization facilitates their analysis and is a great advantage of the suggested approach in terms of didactics.
Employing the ICE computation as a base of the air-fuel mixture fractions in modern applied programs might have led to the labor intensity reduction and execution time cutting due to the number of variables reduction.
Keywords:
piston internal combustion engine, gas exchange, filling, volumetric efficiency, volumetric fractions of air-fuel-residual mixture, molar weight, gaseous fuels, stoichiometric relationships, hydrogenReferences
-
Maslennikov M.M., Rapiport M.S. Aviatsionnye porshnevye dvigateli (Aviation piston engines), Moscow, Gosudarstvennoe izdatel’ stvo oboronnoi promyshlennosti, 1951, 847 p.
-
Moshkov P.A., Samokhin V.F. Experimental determination of piston engine share in the light propeller aircraft power plant total noise. Aerospace MAI Journal, 2016, vol. 23, no. 2, pp. 50-61.
-
Moshkov P.A., Samokhin V.F. Propeller-driven light aircraft power plant noise Integral model. Aerospace MAI Journal, 2016, vol. 23, no. 4, pp. 36-44.
-
Siluyanova M.V., Chelebyan O.G. Pneumatic method for uniform air-fuel mixture preparation in GTE combustor. Aerospace MAI Journal, 2016, vol. 23, no. 4, pp. 86-94.
-
Siluyanova M.V., Chelebyan O.G. Trudy MAI, 2016, no. 87. URL: http://trudymai.ru/eng/published.php?ID=69695
-
Rebrov S.G., Golubev V.A., Lozino-Lozinskaya I.G., Pozvonkov D.M. Trudy MAI, 2018, no 101. URL: http://trudymai.ru/eng/published.php?ID=96934
-
Finogenov S.L., Kolomentsev A.I. Solar thermal rocket engine with beryllium-oxide phase-transition latent heat energy storage and hydrogen afterburning. Aerospace MAI Journal, 2018, vol. 25, no. 3, pp. 107-115.
-
Kalugin K.S., Sukhov A.V. Methane application specifics as a fuel for liquid rocket engines. Aerospace MAI Journal, 2018, vol. 25, no. 4, pp. 120-132.
-
Erokhov V.I., Karunin A.L. Gazodizel’nye avtomobili: Konstruktsiya, raschet, ekspluatatsiya (Gas-Diesel cars: Structure, design, operation). Moscow, Graf-Press, 2005, 560 p.
-
Ter-Mkrtichyan G.G., Saikin A.M., Karpukhin K.E., Terenchenko A.S., Ter-Mkrtichyan Yu.G. Diesel-to- natural gas engine conversion with lower compression ratio. Pollution Research, 2017, vol. 36, no. 3, pp. 678-683.
-
Grigor’ev E.G., Kolubaev B.D., Erokhov V.I. et al. Gazoballonnye avtomobili (Compressed gas vehicles), Moscow, Mashinostroenie, 1989, 216 p.
-
Sharoglazov B.A., Farafontov M.F., Klement’ev V.V. Dvigateli vnutrennego sgoraniya: Teoriya, modelirovanie i raschet protsessov (Internal combustion Engines: Theory, modeling and calculation of processes), Chelyabinsk, YuUrGU, 2004, 344 p.
-
Lenin I.M. Teoriya avtomobil’nykh i traktornykh dvigatelei (Theory of automobile and tractor engines), Moscow, Mashinostroenie, 1969, 367 p.
-
Tareev V.M. Spravochnik po teplovomu raschetu rabochego protsessa dvigatelei vnutrennego sgoraniya (Handbook of thermal calculation of internal combustion engines working process), Leningrad, Rechnoi transport, 1961, 415 p.
-
Volkmar Küntscher. Kraftfahrzeugmotoren. VEB, Verlag Technik, Berlin, 1989, pp. 503, 558 (719 p).
-
Kovylov Yu.L., Uglanov D.A. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta im S.P. Koroleva, 2007, no. 2, pp. 114–117.
-
Sharoglazov B.A., Povalyaev V.A. Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta. Mashinostroenie, 2008, no. 23(123), pp. 20-25.
-
Matyukhin L.M. Sbornik nauchnykh trudov po materialam Mezhdunarodnoi konferentsii Dvigatel’-2007, posvyashchennoi 100-letiyu shkoly dvigatelestroeniya MGTU im. N.E.Baumana. Moscow, MGTU im. N.E. Baumana, 2007, pp. 80–85.
-
Matyujin L. Análisis de los procesos de intercambio de gases en los motores de cuatro tiempos. Panamá, UTP, 2001, vol. 5, IX, pp. 10-13.
-
Matyukhin L.M. Analiz napolneniya i teplovoi raschet DVSna baze sostava rabochei smesi (Filling analysis and thermal design of internal combustion engine based on the working mixture composition). Saarbrücken, LAP LAMBERT Academic Publishing GmbH & Co. KG, 2011, 170 p.
-
Matyukhin L.M. Vestnik Moskovskogo avtomobil’no- dorozhnogo gosudarstvennogo tekhnicheskogo universiteta, 2007, no. 4(11), pp. 5-7.
-
Fuchkin S. AvtoGazoZapravochnyi kompleks + Al’ternativnoe toplivo, 2003, no. 4(10), pp. 28-33.
-
Matyukhin L.M. Transport na al’ternativnom toplive, no. 4(40), pp. 38-46.
-
Matyukhin L.M. Vestnik Moskovskogo avtomobil’no-dorozhnogo gosudarstvennogo tekhnicheskogo universiteta, 2010, no. 3(22), pp. 39-43.
-
Matyukhin L.M. AvtoGazoZapravochnyi kompleks + Al’ternativnoe toplivo, 2012, no. 1(61), pp. 15-18.
-
Matyukhin L.M. El mútodo alternative de la evaluación de calidad de los resultados del intercámbio de gases en los motores de combustión interna. Revista Ingenieria UC, 2018, vol. 25, no 1, pp. 31-43.
-
Matyukhin L.M. Vestnik Moskovskogo Gosudarstvennogo agroinzhenernogo universiteta im. V.P.Goryachkina, no. 4(68), pp. 56-59.
-
Matyukhin L.M., Ter-Mkrtich’yan G.G. Trudy NAMI, 2015, no. 263, pp. 35-44.
-
Ter-Mkrtich’yan G.G. Trudy NAMI, 2014, no. 258, pp. 144-176.
mai.ru — informational site of MAI Copyright © 1994-2024 by MAI |