Fuselage and duct interference effect on maximum thrust of the air pushing propeller-duct thruster

Aeronautical and Space-Rocket Engineering

Aerodynamics and heat-exchange processes in flying vehicles


DOI: 10.34759/vst-2020-1-7-18

Аuthors

Alesin V. S.*, Gubsky V. V.**, Pavlenko O. V.***

Central Aerohydrodynamic Institute named after N.E. Zhukovsky (TsAGI), 1, Zhukovsky str., Zhukovsky, Moscow Region, 140180, Russia

*e-mail: seralesin@mail.ru
**e-mail: Vitaly.Gubsky@tsagi.ru
***e-mail: olga.v.pavlenko@yandex.ru

Abstract

The article presents the numerical research of the interference effect of fuselage and duct of the propeller-duct thruster, and performs evaluation of their impact on the maximum thrust value. It presents the results of the numerical research by means of the program based on numerical solution of averaged by Reynolds Navier-Stokes equations. It demonstrates the pressure and field of velocities change depending on the shape of the fuselage tailpiece and duct-type profile, and their effect on the maximum thrust value. Numerical studies revealed the necessity of such parameters selection as the profile thickness, chord and installation angle of the duct with affect for the flow conditions and interference while a flying vehicle design.

Aerodynamic designing of the optimized duct shape was being performed without changing the external fuselage lines. According to the marked, noted limitations, a new duct-type profile was designed for numerical studies. The opening angle of the duct was being selected based on flow velocities distribution analysis in the duct setting area in such a way that the flow would direct the duct at the angle corresponding to the mode of the maximum quality of the duct profile. The article shows that with the selected velocity of the air flow, the duct profiling changing insignificantly effects it thrust of the propeller itself, but it drastically effects the duct thrust. At this present velocity of the air flow, the rarefication is being observed along the entire internal surface of the duct. The highest rarefication zone occupies up to the 60% of the duct-type profile chord, while it is only 30% with the initial profile.

Thinning-down of a boundary layer and increase in speed in it due to the change of the fuselage shape allows reducing the drag of the fuselage itself. Analysis of the numerical results revealed that at low flight speeds the shape of the fuselage fodder part rather than the duct profile affects the maximum thrust value.

Data analysis of the pressure profile along the internal surface of the duct revealed that rarefication at the internal surface of the duct took the shape of the half-internal distribution, which corresponds to maximum thrust of the propeller-duct thruster.

It is necessary to solve the inverse problem of ensuring half-internal pressure profile along the internal surface of the duct for the defined flight speed while the screw-duct thruster design.

Keywords:

air pusher propeller, shrouded propeller, propeller in a duct, duct’s profile, propeller thrust

References

  1. Abalakin I.V., Bakhvalov P.A., Bobkov V.G., Kozubskaya T.K., Anikin V.A. Numerical investigation of the aerodynamic and acoustical properties of a shrouded rotor. Fluid Dynamics, 2016, vol. 51, no. 3, pp. 419-433.

  2. Skvortsov R.A., Titarev V.A., Belyaev I.V. Akustika sredy obitaniya, 2016, pp. 152–155.

  3. Shaidakov V.I., Zavalov O.A. Trudy MAI, 2011, no. 49. URL: http://trudymai.ru/eng/published.php?ID=26563

  4. Shaidakov V.I. Trudy MAI, 2011, no. 49. URL: http://trudymai.ru/eng/published.php?ID=26562

  5. Shaidakov V.I., Zavalov O.A. Aerodinamicheskoe proektirovanie fenestrona (Aerodynamic design of the fenestron), Moscow, MAI, 1980, 66 p.

  6. Shydakov V. I., Zavalov O. A. Numerical modeling for parametrical study of fenestron geometry on the basis of energy analysis. Aerospace MAI Journal, 2013, vol. 20, no. 5, pp. 7-16.

  7. Shydakov V.I. Aerodynamic characteristics of the shrouded rotor with an inlet and a short diffuser at the stationary hover operation mode. Aerospace MAI Journal, 2013, vol. 20, no. 4, pp. 36-46.

  8. Le K.D., Semenchikov N.V., Tran Q.D., Yakovlevskii O.V. Trudy MAI, 2012, no. 52. URL: http://trudymai.ru/eng/published.php?ID=29590

  9. Le K.D., Semenchikov N.V., Tran Q.D., Yakovlevskii O.V. Trudy MAI, 2012, no. 52. URL: http://trudymai.ru/eng/published.php?ID=29440

  10. Ostroukhov S.P. Aerodinamika vozdushnykh vintov i vintokol’tsevykh dvizhitelei (Aerodynamics of propellers and screw-duct thrusters), Moscow, Fizmatlit, 2014, pp. 17-18 (329 p.).

  11. Egoshin S.F. Impact evaluation of multi-propeller wing blow-over system on the stol aircraft characteristics. Aerospace MAI Journal, 2018, vol. 25, no. 4, pp. 64-76.

  12. Shaidakov V.I. Izvestiya vysshikh uchebnykh zavedenii. Ser. “Aviatsionnaya tekhnika”, 1960, no. 2, pp. 22-28.

  13. Moizykh E.I., Zavalov O.A., Kuznetsov A.V. Trudy MAI, 2012, no. 50. URL: http://trudymai.ru/eng/published.php?ID=26557

  14. Ostoslavskii I.V., Matveev V.R. Trudy TsAGI, issue 248. Moscow, TsAGI im. prof. N. E. Zhukovskogo, 1935, 39 p.

  15. Shaidakov V.I. Nauchnyi vestnik MGTU GA, 2016, no. 226(4), pp. 165-174.

  16. Pereira J.L. Hover and Wind-Tunnel Testing of Shrouded Rotors for Improved Micro Air Vehicle Design. Dissertation for the degree of Doctor of Philosophy. Faculty of the Graduate School of the University of Maryland, College Park, 2008, 354 p.

  17. Kim G.H., Jeong Y.D., Park S.O. Measurement and prediction of control vane force in the wake of a shrouded propeller system. 27th International Congress of the Aeronautical Sciences ICAS-2010 (19-24 September 2010, Nice, France). Paper ICAS2010-P2.16.

  18. Ohanian O.J. Ducted Fan Aerodynamics and Modeling, with Applications of Steady and Synthetic Jet Flow Control. Dissertation for the degree of Doctor of Philosophy in Mechanical Engineering. Faculty of the Virginia Polytechnic Institute and State University, 2011, 205 p.

  19. Yilmaz S., Erdem D., Kavsaoglu M.S. Effects of Duct Shape on a Ducted Propeller Performance. 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (07-10 January 2013, Dallas, Texas). AIAA Paper 2013-0803. DOI: 10.2514/6.2013-803

  20. Bogdanski K., Krusz W., Rodzewicz M., Rutkowski M. Design and optimization of low speed ducted fan for a new generation of joined wing aircraft. 29th Congress of the International Council of the Aeronautical Sciences ICAS-2014 (St. Petersburg, Russia; 07–12 September 2014), vol. 1, pp. 1809-1813.

  21. Huo C., Barenes R., Gressier J., Grondin G. Numerical study on parametrical design of long shrouded contra-rotating propulsion system in hovering. International Conference on Mechanical and Aerospace Engineering ICMAE-2011 (28-30 November 2011; Venice, Italy), 2011, vol. 5, no. 11, pp. 1760-1769.

  22. Jardin T., Grondin G., Gressier J., Huo C., Doue N., Barenes R. Revisiting Froude’s Theory for Hovering Shrouded Rotor. AIAA Journal, 2015, vol. 53, no. 7, pp. 1-9. DOI: 10.2514/1.J053507

  23. Bi N.P., Kimmel K.R., Haas D.J. Performance Investigation of Ducted Aerodynamic Propulsors. First International Symposium on Marine Propulsors (Trondheim, Norway, June 2009).

  24. Razov A.A. Uchenye zapiski TsAGI, 2009, vol. XL, no. 3, pp. 28–35.

  25. Alesin V.S., Gubskii V.V., Druzhinin O.V., Eremin V.Yu., Pavlenko O.V. Avtomatizatsiya. Sovremennye tekhnologii, 2018, vol. 72, no. 2, pp. 91–96.

  26. Alesin V.S., Gubskii V.V., Druzhinin O.V., Eremin V.Yu., Pavlenko O.V. Tekhnika vozdushnogoflota, 2018, vol. XCII, no. 2(731), pp. 10-14.

  27. Liebeck R.H. Low Reynolds number airfoil design at the Douglas aircraft company. Conference on Aerodynamics at low Reynolds numbers, 1986, vol. 1, paper N 7.

  28. Stratford B.S. An experimental flow with zero skin friction throughout its region of pressure rise. Journal of Fluid Mechanics, 1959, vol. 5, no. 1, pp. 17-35. DOI: 10.1017/S0022112059000027

  29. Vozhdaev V.V., Teperin L.L., Chernyshev S.L. Trudy TsAGI, issue 2740, Moscow, TsAGI im. prof. N.E. Zhukovskogo, 2014, 62 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI