Basic aspects of flap technological design with boundary layer control

Aeronautical and Space-Rocket Engineering

Design, construction and manufacturing of flying vehicles


DOI: 10.34759/vst-2020-1-88-99

Аuthors

Dolgov O. S.*, Zotov A. A.**, Kolpakov A. M.***, Volkov A. V.****

,

*e-mail: dolgov@mai.ru
**e-mail: aa-zotov@inbox.ru
***e-mail: a.kolpakov@mai.ru
****e-mail: rosezento@gmail.com

Abstract

The article studies aerodynamic, structural, strength and technological considerations while developing a flap design with boundary layer blowing. As the result of the interdisciplinary approach, the principles of functionality and reliability ensuring of the structure were considered together with the principles that ensure its manufacturability, which allowed to highlighting the main of the technological design aspects of the flap with boundary layer blowing.

Introduction considers statistics on the number of domestic airfields and airports and performs a comparative analysis with the number of airfields and airports in the United States of America.

According to the strategy approved by the Government of the Russian Federation for the period up to 2030, the task was set to create a single transport environment for implementing high-quality competitive services for passengers and goods transportation. Given this strategy, it is obvious that regional aviation should play a leading role. Its revival is non-alternative, fastest and, eventually, the least costly way of ensuring the livelihood of the population in the regions, which corresponds to the geopolitical tasks of ensuring the integrity of Russia.

On the assumption of current situation, employing short unpaved grounds as runways may become the set problem solution.

Ensuring the feasibility of short unpaved grounds operation without their additional equipping may be possible with employing the flaps with controlled boundary layer on the aircraft.

Further, analysis of the limitations at the approach to forming the flap appearance with the possibility of the boundary layer blowing was performed.

Various design solutions implementing the impact on the boundary layer were analyzed.

The key principles for the structure manufacturability ensuring of the flap with the core in the form of regular discrete elements arranged chequer-wise have been elaborated.

Technological design aspects discussed in the article will allow the aircraft designer to design a flap with the boundary layer control, without significant increase in weight and internal stresses. Its application will allow the aircraft takeoff and landing employing ultra-short runways. It is especially relevant within the context of solving the problem of creating a single transport environment up to 2030 to ensure high- quality competitive services for passengers and goods transportation in the Russian Federation, by reviving regional aviation and re-creating local air routes in a situation of widespread reduction of the airfield and airport network.

Thus, following the above said principles, together with the requirements to the technical specifications for the product, the aircraft designer will be able to create the best technological design, which meets herewith the requirements of operational reliability and functionality.

Keywords:

technological design, boundary layer, slotted flap, laminarization, three-layer structure with discrete filler, sheet stamping, 3D-printing

References

  1. Dolgova O.S., Dolgova T.V., Lyakishev M.A. A method of assessing effectiveness of multi-purpose aircraft systems and individual units at the early aircraft design stages. Aerospace MAI Journal, 2013, vol. 20, no. 4, pp. 17-26.

  2. Endogur A.I., Pankevich A.A. Structures weight comparison of commercial aircraft with different aerodynamic schemes. Aerospace MAI Journal, 2010, vol. 17, no. 1, pp. 5-9.

  3. Sidel’nikov S.B., Dovzhenko N.N., Ber V.I., Belokopytov V.I., Gogol’ I.S., Sokolov R.E. Teoriya protsessov kuznechno-shtampovochnogo proizvodstva (Theory of forging and stamping production processes), Krasnoyarsk, Sibirskii federal’nyi universitet, 2008, 78 p. URL: http://ebibl/umkd/64/u_lectures.pdf

  4. Zubtsov M.E. Listovaya shtampovka (Sheet stamping). Leningrad, Mashinostroenie, 1980, 432 p.

  5. Romanovskii V.P. (ed.). Spravochnik po kholodnoi shtampovke (Cold stamping handbook), Leningrad, Mashinostroenie, 1979, 520 p.

  6. Leshchenko S.M. (ed.). Rekomendatsii po tekhnologichnosti samoletnykh konstruktsii (Recommendations on aircraft structures manufacturability), Moscow, NII tekhnologii i organizatsii proizvodstva NIA, 1972, 682 p.

  7. Zotov A.A., Kolpakov A.V., Volkov A.V. Trudy MAI, 2018, no. 103. URL: http://trudymai.ru/eng/ published.php?ID=100595

  8. Birger I.A., Panovko Ya.G. (eds.). Prochnost’, ustoichivost’, kolebaniya. T. 3 (Strength, stability, oscillations. Vol. 3), Moscow, Mashinostroenie, 1968, 567 p.

  9. Endogur A.I., Kravtsov V.A., Soloshenko V.N. Trudy MAI, 2014, no. 72. URL: http://trudymai.ru/eng/ published.php?ID=47572

  10. Guan’ Sh., Dudchenko A.A., Endogur A.I. Trudy MAI, 2004, no. 15. URL: http://trudymai.ru/eng/ published.php?ID=34246

  11. Khaliulin V.I., Dvoeglazov I.V., Batrakov V.V. Materialy Nauchno-prakticheskoi konferentsii (Kazan, 8-10 August 2003) “Aviakosmicheskie tekhnologii i oborudovanie”, Kazan, Kazanskii gosudarstvennyi tekhnicheskii universitet, 2003, pp. 64-72.

  12. Babaitsev A.V., Zotov A.A. Tekhnologiya metallov, 2018, no. 11, pp. 16-20. DOI: 10.31044/1684-2499-2018-11-16-20

  13. Zotov A.A., Babaitsev A.V., Volkov A.N. Izvestiya Tul’skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2017, no. 12-2, pp. 175–185.

  14. Dvoeglazov I.V., Khaliulin V.I. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta imeni akademika S.P. Koroleva, 2012, no. 5-2(36), pp. 275–287.

  15. Abdullin I.N. Ratsional’noeproektirovanie trekhsloinykh konstruktsii so sterzhnevym zapolnitelem (Rational design of three-layer structures with core filler). Doctor’s thesis, Kazan, 2016, 125 p.

  16. Khaliulin V.I., Batrakov V.V., Shabalov A.V. Patent RU 2371315 C1, 27.10.2009.

  17. Panin V.F., Gladkov Yu.A. Konstruktsii s zapolnitelem (Structures with filler), Moscow, Mashinostroenie, 1991, 272 p.

  18. Aleksandrov A.Ya., Kurshin L.I. Prochnost’, ustoichivost’, kolebaniya (Strength, stability, oscillations), Moscow, Mashinostroenie, 1968, vol. 2, pp. 243-326.

  19. Gainutdinov V.G., Sorkin E.M. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 2004, no. 1, pp. 3-5.

  20. Heimbs S., Middendorf P., Kilchert S., Johnson A.F., Maier M. Numerical simulation of advanced folded core materials for structural sandwich applications. 1st European Air and Space Conference “Composites Science and Technology” CEAS (September 2007, Berlin), pp. 29-30.

  21. Mudra C. Alternative sandwich core structures. Efficient investigation of application potential by using finite element modeling. The 24th SAMPE (Society for the Advancement of Material and Process Engineering) Europe international conference (Paris, 1-3 April 2003), p. 444.

  22. Heimbs S. Sandwich structures with folded core: mechanical modeling and impact simulation. The 30 th Society for the Advancement of Material and Process Engineering (SAMPE) Europe international conference (Paris, 2009), pp. 153–161.

  23. Franco F., Cunefare K.A., Ruzzene M. Structural- acoustic optimization of sandwich panels. Journal of Vibration and Acoustics, 2007, vol. 129, no. 3, pp. 330–340. DOI: 10.1115/1.2731410

  24. Wadley H.N.G., Fleck N.A., Evans A.G. Fabrication and structural performance of periodic cellular metal sandwich structures. Composites Science and Technology, 2003, vol. 63, no. 16, pp. 2331-2343. DOI: 10.1016/S0266-3538(03)00266-5

  25. Joo J.H., Kang K.J. Modified metallic octet truss cellular cores for sandwich structures fabricated by an expanded metal forming process. Journal of Sandwich Structures and Materials, 2010, vol. 12, no. 3, pp. 327–349.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI