Position and motion control of aerial vehicles in automatic landing systems: analytical review

Aeronautical and Space-Rocket Engineering

Dynamics, ballistics, movement control of flying vehicles


DOI: 10.34759/vst-2020-3-7-22

Аuthors

Pogosyan M. A.1*, Vereikin A. A.2**

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. PJSC UAC Sukhoi Design Bureau, 23A, Polikarpova str., Moscow, 125284, Russia

*e-mail: mai@mai.ru
**e-mail: aautres@gmail.com

Abstract

The main technical characteristics of automatic landing systems (ALS) of manned and unmanned aerial vehicles (AV) are derivate of the characteristics of automatic control systems. The performed analysis of literary sources devoted to the study of the AV automatic control issues at the landing stage revealed a deficit of survey and analytical work, considering comprehensively the problem of the AV automatic control forming during landing process.

The purpose of this work consists in studying the AV spatial position control issues, relevant for the ALS of both manned and unmanned AVs, revealing the main problems getting in the way of AV ALS development and preferred technical solutions, which can be employed while the AV ALS creation.

To achieve the set goal, the following aggregate of systematic interrelated methodological approaches was applied to reveal the basic pros and contras of the objects being analyzed. These approaches are based on:

- search and analysis of scientific and technical literature, and its systematic review;

- analysis of trends to reveal the dominating ones in the ALS development with regard to the AV information support and control;

- SWOT-analysis.

The performed information search on the issues of AV control forming while automatic landing (AL) in scientific and technical literature and other open sources, its analysis and systematic review allowed outline the two groups of techniques for the AV control forming while the AL process:

- control actions forming based on the object state vector, being formed by the information support means;

- control actions forming based on the preprocessed information, being formed by information support means.

The techniques for the automatic control forming related to the second group are of practical interest, thus the subject matter of the article is limited by them.

The works, being analyzed, devoted to the AV control in the process of the AL performing are classified in accordance with to the following problematic areas, to which studying they are dedicated:

- the ALS architecture;

- synthesis of automatic control algorithms;

- fuzzy control;

- the AL process optimization;

- the AL process mathematical modelling.

The technical solutions proposed in the framework of the outlined problematic areas were analyzed, their advantages and disadvantages were revealed.

The authors proposed to employ multi-level architecture, Kalman filter, Luenberger observer, and model-oriented method for designing automatic control systems as the ALS technological base. The inertial navigation system, being corrected by the iformation obtained from the satellite navigation system with functional add-ons (differential navigation), and radio navigation system as a stand-by information source can be proposed as the AL information support core. The article presents a functional diagram of the ALS built on the proposed principles.

The automatic control system for the AV during the AL execution can be recommended to be built based on stabilization of the set flight path using linear deviations from it and, possibly, changing of the rates of these deviations. This approach will allow employing the constant gains in contrast to the variable coefficients used in the case of the of angular deviations application. Besides, the ALS should ensure the lack of necessity of the crew intervening in control process at low altitudes even in the case of control resources degradation, and preserve its operability in conditions of external information sources loss.

Keywords:

aerial vehicle, unmanned aerial vehicle, automatic landing, position and motion control of aerial vehicle, automatic landing system

References

  1. Vereikin A.A., Lerner I.I. Materialy Vserossiiskoi nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem “Novye tekhnologii, materialy i oborudovanie rossiiskoi aviakosmicheskoi otrasli”, AKTO-2016, Kazan, Akademiya nauk respubliki Tatarstan, 2016, vol. 2, pp. 404-409.

  2. Kolesnikov A.A., Kobzev V.A., Nikitin A.I. Izvestiya Yuzhnogo federal’nogo universiteta. Tekhnicheskie nauki, 2011, vol. 119, no. 6, pp. 125-139.

  3. Siegel D., Hansman R.J. Development of an Autoland System for General Aviation Aircraft. Report No. ICAT-2011-09, September, 2011. MIT International Center for Air Transportation (ICAT), Department of Aeronautics & Astronautics, Massachusetts Institute of Technology. Cambridge, MA 02139 USA, 208 p.

  4. Mazur V.N., Mel’nikova E.A. Trudy FGUP “NPTsAP”. Sistemy i pribory upravleniya, 2010, no. 1, pp. 44-53.

  5. Mazur V.N., Mel’nikova E.A. Trudy MIEA. Navigatsiya i upravlenie letatel’nymi apparatami, 2011, no. 4, pp. 48-61.

  6. Mazur V.N., Khlgatyan S.V., Skripnik N.P. Trudy MIEA. Navigatsiya i upravlenie letatel’nymi apparatami, 2011, no. 4, pp. 74-83.

  7. Mazur V.N., Khlgatyan S.V. Trudy MIEA. Navigatsiya i upravlenie letatel’nymi apparatami, 2010, no. 2, pp. 17-29.

  8. Gonzalez P.J., Boschetti P.J., Cárdenas E.M., Rodriguez M. Design of a Landing Control System which considers Dynamic Ground Effect for an Unmanned Airplane. 1st WSEAS International Conference on Aeronautical and Mechanical Engineering - AEME ’13 (Vouliagmeni, Atenas, Grecia), pp. 143-148. URL: http://www.wseas.us/e-library/conferences/2013/Vouliagmeni/MRME/MRME-21.pdf

  9. Podoplekin Yu.F., Tolmachev S.G., Sharov S.N. Informatsionno-upravlyayushchie sistemy, 2012, no. 3(58), pp. 22-28.

  10. You D.I., Jung Y.D., Cho S.W., Shin H.M., Lee S.H., Shim D.H. A Guidance and Control Law Design for Precision Automatic Take-off and Landing of Fixed-Wing UAVs. American Institute of Aeronautics and Astronautics (AIAA) Guidance, Navigation, and Control Conference (13-16 August 2012, Minneapolis, Minnesota), 19 p. DOI: 10.2514/6.2012-4674

  11. Lerner I.I., Vereikin A.A., Orekhov M.I. Materialy Tret’ei Vserossiiskoi Nauchno-tekhnicheskoi konferentsii (21-22 September2017, Moscow, GosNIIAS). “Navigatsiya, navedenie i upravlenie letatel’nymi apparatami”, Moscow, Nauchtekhlitizdat, 2017, vol. 1, pp. 200-201.

  12. Vereikin A.A. Materialy XXI nauchno-tekhnicheskoi konferentsii molodykh uchenykh i spetsialistov (30 October – 3 November 2017, Korolev), Korolev, RKK “Energiya” imeni S.P. Koroleva, 2017, vol. 1, pp. 42-43.

  13. Bitter V.V., Mikhailin D.A. Informatsionno-izmeritel’nye i upravlyayushchie sistemy, 2009, vol. 7, no. 7, pp. 10-14.

  14. Conte G., Doherty P. Vision-Based Unmanned Aerial Vehicle Navigation Using Geo-Referenced Information. EURASIP Journal on Advances in Signal Processing, 2009. Article no. 387308, 18 p. DOI: 10.1155/2009/387308

  15. Kostyukov V.M., Trinh V.T., Nguyen N.M. Airliner automatic landing optimal trajectory shaping based on anthropocentric principle. Aerospace MAI Journal, 2016, vol. 23, no. 1, pp. 123-135.

  16. Kostyukov V.M., Trinh V.T., Nguyen N.M. Realization of passenger plane auto-land desired trajectory shaping algorithm based on anthropocentric principle. Aerospace MAI Journal, 2016, vol. 23, no. 3, pp. 84-95.

  17. Lakovic E., Lotinac D. Aircraft Landing Control Using Fuzzy Logic and Neural Network. 8 p. URL: https://www.semanticscholar.org/paper/Aircraft-Landing-Control-Using-Fuzzy-Logic-and-Lakovic/963594433580c9350c05dd4e5daec60942e31056?p2df

  18. Raj K.D.S., Tattikota G. Design of Fuzzy Logic Controller for Auto Landing Applications. International Journal of Scientific and Research Publications, 2013, vol. 3, no. 5, 9 p. URL: http://www.ijsrp.org/research-paper-0513/ijsrp-p1790.pdf

  19. Kashyap S.K., Gopalarathnam G. Fuzzy Controller for Aircraft Auto-landing. UKIERI WORKSHOP (2-3 December 2010, IIT Bombay), 8 p.

  20. Kuzin A.V., Kurmakov D.V., Luk’yanov A.V., Mikhailin D.A. Trudy MAI, 2013, no. 70. URL: http://trudymai.ru/eng/published.php?ID=44540

  21. Ul’yanov G.N., Ivanov S.A., Vladyko A.G. Informatsionno-upravlyayushchie sistemy, 2012, no. 4, pp. 70-73.

  22. Furtat I.B. Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki, 2013, no. 3(85), pp. 51-55.

  23. Kuz’min V.P., Yaroshevskii V.A. Uchenye zapiski TsAGI, 1984, vol. XV, no. 2, pp. 43-56.

  24. Kuz’min V.P., Parysheva G.V. Uchenye zapiski TsAGI, 1985, vol. XVI, no. 6, pp. 55-66.

  25. Kuz’min V.P. Uchenye zapiski TsAGI, 1987, vol. XVIII, no. 5, pp. 65-69.

  26. Kuz’min V.P. Uchenye zapiski TsAGI, vol. XXIX. 1998, no. 3-4, pp. 134-143.

  27. Kuznetsov A.A., Kuz’min V.P. Uchenye zapiski TsAGI, 2004, vol. 35, no. 3-4, pp. 70-78.

  28. Kuznetsov A.G., Aleksandrovskaya L.N. Trudy MIEA. Navigatsiya i upravlenie letatel’nymi apparatami, 2011, no. 3, pp. 2-11.

  29. Vereikin A.A., Lerner I.I., Sumatokhin D.V. Materialy Vserossiiskoi nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem (8-10 August 2018) “Novye tekhnologii, materialy i oborudovanie rossiiskoi aviakosmicheskoi otrasli” - AKTO-2018. Kazan, Kazanskii gosudarstvennyi tekhnicheskii universitet, 2018, vol. 3, pp. 63-69.

  30. Sheval V.V., Krylov I.G. Comparative experimental and imitating researches of automatic landing of a pilotless aircraft. Aerospace MAI Journal, 2009, vol. 16, no. 6, pp. 150-154.

  31. Aviation Safety Network (ASN) Aircraft accident Boeing-747-412F TC-MCL Bishkek-Manas International Airport (FRU). URL: https://aviation-safety.net/database/record.php?id=20170116-0

  32. Burenok V.M., Naidenov V.G., Polyakov V.I. Matematicheskie metody i modeli v teorii informatsionno-izmeritel’nykh sistem (Mathematical methods and models in the theory of information and measurement systems), Moscow, Mashinostroenie, 2011, 336 p.

  33. Rybakov K.A. Giroskopiya i navigatsiya, 2018, vol. 26, no. 4(103), pp. 82-95.

  34. Goodwin G.C. Control system design. Upper Saddle River, NJ, United States, Prentice Hall PTR, 2001, 908 p.

  35. Kálmán R.E. A new approach to linear filtering and prediction problems. Transactions of the ASME – Journal of Basic Engineering, 1960, vol. 82, no.1 (Series D), pp. 35-45. DOI: 10.1115/1.3662552

  36. Kálmán R.E., Bucy R. New results in linear filtering and prediction theory. Transactions of the ASME – Journal of Basic Engineering, 1961, vol. 83, pp. 95-107.

  37. Luenberger D. Observing the state of a linear system.IEEE Transactions on Military Electronics, 1964, vol. 8, no. 2, pp. 74-80. DOI: 10.1109/TME.1964.4323124

  38. Luenberger D. An introduction to observers. IEEE Transactions on Automatic Control, 1972, vol. 16, no. 6, pp. 596-602. DOI: 10.1109/TAC.1971.1099826

  39. Cho A., Kim J., Lee S., Kim B., Park N., Kim D., Kee C. Fully automatic taxiing, takeoff and landing of a UAV based on a single-antenna GNSS receiver. 17th World Congress the International Federation of Automatic Control - IFAC (6-11 July 2008, Seoul, Korea), vol. 41, no. 2, pp. 4719-4724. DOI: 10.3182/20080706-5-KR-1001.00794

  40. Marcus G. Deep learning: A critical appraisal. arXiv preprint 1801.00631, 2018. URL: https://arxiv.org/abs/1801.00631

  41. Vereikin A.A. Materialy XX Vserossiiskogo mezhotraslevogo molodezhnogo konkursa nauchno-tekhnicheskikh rabot i proektov (19-23 November 2018) “Molodezh’ i budushchee aviatsii i kosmonavtiki”, Moscow, MAI, 2018, pp. 36-38.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI