A small spacecraft motion control method employing inflatable braking units for deceleration while orbital flight prior to the atmospheric entry

Aeronautical and Space-Rocket Engineering

Dynamics, ballistics, movement control of flying vehicles


DOI: 10.34759/vst-2020-3-23-36

Аuthors

Kul'kov V. M.*, Yoon S. W.**, Firsyuk S. O.***

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: vmk_1@mail.ru
**e-mail: wook4573@naver.com
***e-mail: iskramai@gmail.com

Abstract

The article considers braking modes control of the small spacecraft (SS) of the CubeSat type by aerodynamic braking units. The controllability area for hitting any atmospheric entry point employing boundary condition for the range angle and angle of entrance is under consideration. When employing aerodynamic braking system, it is necessary to tend to obtain the range angle value ensuring hitting the specified region of the Earth surface for safe fall of SS fragments and the angle of entrance guaranteeing the SS burning out in the dense atmosphere.

The problem of finding optimal control of the SS with IAD can be solved stage-by-stage. Initially the problem of minimizing the flight time from the initial orbit to the atmospheric boundary is being solved. Then the requirements for the final values of the trajectory parameters of the aerodynamic braking section are being determined. Finally, the control law σx(t) should be found, which ensures the SS hitting the specified region of the phase coordinates.

As the result of the proposed approach, the complex task of optimizing the trajectory of SS is reduced to solving two problems: first, at the interorbital transfer section prior to atmospheric entry, and then at the section of main aerodynamic deceleration in the atmosphere. This allows eliminating the jumps of the right-hand parts in the formulated problem and simplifying it significantly without breaking the generality.

The study of the effect of perturbing factors acting on the SS of a CubeSat type with IAD was conducted, and the impact of variations in the atmospheric density was demonstrated. Ballistic analysis was performed using various control laws of the SS using IAD with 1–2 balloons, in condition of hitting the specified area at the boundary of the atmosphere with account for the levels of solar activity. Analysis of the possibility of control by the control function changing (ballistic coefficient) was conducted. A comparative assessment of the considered control programs was performed, depending on a number of basic conditions for the restrictions of the motion control problem of the SS with IAD.

Keywords:

optimal control, small spacecraft, inflatable structures, deorbiting, space debris, control mode, ballistic analysis

References

  1. Nesterin I.M., Pichkhadze K.M., Sysoev V.K. et al. Vestnik NPO im. S.A. Lavochkina, 2017, no. 3(37), pp. 20–26.

  2. Firsyuk S.O., Biryukova M.V., Odelevskii V.K., Yoon S.W. Materialy I Vserossiiskoi konferentsii po kosmicheskomu obrazovaniyu (1–4 October 2019) “Doroga v kosmos”, Moscow, IKI RAN, 2019, pp. 349-350.

  3. Kul’kov V.M., Glotov M.K., Yoon S.W. Materialy 54 Nauchnykh chtenii pamyati K.E. Tsiolkovskogo (17-19 September 2019, Kaluga) “Nauchnoe nasledie i razvitie idei K.E. Tsiolkovskogo”, Kaluga, AKF “Politop”, 2019. Part I, pp. 94-96.

  4. Yoon S.W., Kul’kov V.M., Firsyuk S.O. Materialy XLIV Akademicheskie chteniya po kosmonavtike “Korolevskie chteniya” (28—31 January 2020), Moscow, MGTU im. N.E. Baumana, 2020, vol. 1, pp. 100-101.

  5. Kul’kov V.M., Yoon S.W., Firsyuk S.O. Materialy XVIII Mezhdunarodnoi konferentsii “Aviatsiya i kosmonavtika – 2019”, Moscow, Logotip, 2019, pp. 140-141.

  6. Horn A.C. A Low Cost Inflatable CubeSat Drag Brake Utilizing Sublimation. Master of Science (MS), Thesis, Mechanical & Aerospace Engineering, Old Dominion University, United States, Virginia, 2017. DOI: 10.25777/1xaw-be17

  7. Chandra A., Thangavelautham J. De-orbiting Small Satellites Using Inflatables. AMOS Conference, Maui, Hawaii, 2018. URL: https://arxiv.org/ftp/arxiv/papers/1809/1809.04459.pdf

  8. Nakasuka S., Senda K., Watanabe A., Yajima T., Sahara H. Simple and Small De-Orbiting Package for Nano-Satellites Using an Inflatable Balloon. Transactions of the Japan Society for Aeronautical and Space Sciences, Space Technology Japan, 2009, vol. 7, no. 26. DOI: 10.2322/tstj.7.Tf_31

  9. Yoon S.W., Kul’kov V.M., Firsyuk S.O., Koryanov V.V., Nedogarok A.A. Materialy XLIV Akademicheskie chteniya po kosmonavtike “Korolevskie chteniya” (28—31 January 2020), Moscow, MGTU im. N.E. Baumana, 2020, vol. 1, pp. 731-732.

  10. Carendente V., Raffaele S. New Concepts of Deployable De-Orbit and Re-Entry Systems for CubeSat Miniaturized Satellites. Recent Patents on Engineering, 2014, vol. 8, no. 1, pp. 2-12. DOI: 10.2174/1872212108666140204004335

  11. Nock K., Gates K., Aaron K., McRonald A. Gossamer Orbit Lowering Device (GOLD) for Safe and Efficient De-Orbit. AIAA/AAS Astrodynamics Specialist Conference (02-05 August 2010, Toronto, Ontario, Canada). AIAA 2010-7824. DOI: 10.2514/6.2010-7824

  12. Brouke R.A., Cefola P.J. On the Equinoctial Orbital Elements. Celestial Mechanics, 1972, vol. 5, pp. 303-310. DOI: 10.1007/BF01228432

  13. Nikolichev I.A. Optimizatsiya mnogovitkovogo mezhorbital’nogo pereleta kosmicheskogo apparata s elektroraketnoi dvigatel’noi ustanovkoi s uchetom deistviya vozmushchenii (Optimization of the multi-turn interorbital transfer of a spacecraft with electric rocket propulsion system with account fort the effect of disturbances), Doctor’s thesis, Moscow, MAI, 2017, 283 p.

  14. Petukhov V.G. Optimizatsiya traektorii kosmicheskikh apparatov s elektroraketnymi dvigatel’nymi ustanovkami metodom prodolzheniya (Trajectories optimization of the spacecraft with electric rocket propulsion systems by the continuation method), Doctor’s thesis, Moscow, MAI, 2013, 152 p.

  15. Kovtunenko V.M., Kameko V.F., Yaskevich E.P. Aerodinamika orbital’nykh kosmicheskikh apparatov (Orbital spacecraft aerodynamics), Kiev, Naukova dumka, 1977, 156 p.

  16. Atmosfera Zemli verkhnyaya. Model’ plotnosti dlya ballisticheskogo obespecheniya poletov iskusstvennykh sputnikov Zemli, GOST R 25645.166-2004 (Earth upper atmosphere. Density model for ballistic support of flights of artificial earth satellites, State Standard R 25645.166-2004), Moscow, Standarty, 2004, 28 p.

  17. Cole A.E., Groves G.V., Champin K.S.W., Jaccia L.G., Archangelsk V.N., Poloskov S.M., Marov M.Ya., Roemer M. CIRA 72: COSPAR International Reference Atmosphere 1972. Berlin, Akademie-Verlag, 1972, 450 p.

  18. Kelso T.S. Space Weather Data Documentation. URL: https://www.celestrak.com/SpaceData/SpaceWx-format.php

  19. Nikolichev I.A. Optimization of the multirevolutional non-coplanar low-thrust orbital transfers. Aerospace MAI Journal, 2013, vol. 20, no. 5, pp. 66-76.

  20. Usovik I.V., Darnopykh V.V., Malyshev V.V. Methodology of evolution of technogenic pollution assessment of low Earth orbits with regard to mutual collisions and active space debris removal. Aerospace MAI Journal, 2015, vol. 22, no. 3, pp. 54-62.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI