The effect of the central body diameter of a dual-circuit burner on the hazardous substances release

Aeronautical and Space-Rocket Engineering

Thermal engines, electric propulsion and power plants for flying vehicles


DOI: 10.34759/vst-2020-3-139-145

Аuthors

Baklanov A. V.

Kazan National Research Technical University named after A.N. Tupolev, 10, Karl Marks str., Kazan, 420111, Russia

e-mail: andreybaklanov@bk.ru

Abstract

At present, the LPP (Lean-Premixed and Pre-vaporised) concept is one of the most effective concepts of the low-emission fuel combustion, which is based on the low-temperature (Tflame =1800—1900 K) combustion of pre-mixed “poor” fuel-air mixture (FAM). This concept foresees thorough mixing of the fuel with air in the burner prior to feeding to the combustion zone. It is well-known that technical perfection of these burners ensures successful problem solving of nitrogen oxides and carbon monoxide release reduction while maintaining high efficiency and stability of the combustion process. Thus, the efforts aimed at studying these burners design impact on the emission characteristics of the flame are necessary while development and adjustment of combustion chambers of gas turbine engines, accomplished within the framework of the LPP concept.

The presented article considers the structure of the dual-circuit burner of the low-emission combustion chamber of the gas turbine engine, operating on the natural gas. The results of the studies of the three burners differing by the size of the outlet part of the developed swirler hub are presented. The article presents also the results of the components concentration measuring of the final gas mixture, in particular carbon monoxide CO, nitrogen oxides NO and unburned hydrocarbons CH in the combustion products. Computation of the fuel combustion efficiency was performed. Selection of a burner, which demonstrated minimum of value of nitrogen concentration and maximum combustion efficiency level and carbon monoxide in the samples being drawn was conducted. The best appeared to be a burner having a structure with the central body diameter to the outlet nozzle diameter ratio of A/B = 0.62.

Keywords:

dual-circuit burner, low-emission combustion chamber, experiment, combustion efficiency, ecology

References

  1. Lefebvre A.H., Ballal D.R. Gas Turbine Combustion: Alternative Fuels and Emissions. 3rd edition. CRC Press, 2010, 557 p.

  2. Lefebvre A.H. Fuel effects on gas turbine combustion-ignition, stability, and combustion efficiency. Journal of Engineering for Gas Turbines and Power, 1985, vol. 107, no. 1, pp. 24-37. DOI: 10.1115/1.3239693

  3. Gritsenko E.A., Danil’chenko V.P., Lukachev S.V., Reznik V.E., Tsybizov Yu.I. Konvertirovanie aviatsionnykh GTD v gazoturbinnye ustanovki nazemnogo primeneniya (Aviation gas turbine engines conversion into ground application gas turbines), Samara, SNTs RAN, 2004, 266 p.

  4. Moses C.A., Roets P.N.J. Properties, Characteristics and Combustion Performance of Sasol Fully Synthetic Jet Fuel. Journal of Engineering for Gas Turbines and Power, 2009, vol. 131, no. 4. DOI: 10.1115/1.3028234

  5. Markushin A.N., Merkushin V.K., Byshin V.M., Baklanov A.V. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 2010, no. 1, pp. 41-44.

  6. Lee S., Speight J.G., Loyalka S.K. Handbook of Alternative Fuel Technologies, 2nd Edition, CRC Press, Boca Raton, FL, 2014, 712 p.

  7. Baklanov A.V. Controlling fuel combustion process by burner design change in gas turbine engine combustion chamber. Aerospace MAI Journal, 2018, vol. 25, no. 2, pp. 73-85.

  8. Mingazov B.G. Kamery sgoraniya gazoturbinnykh dvigatelei (Combustion chambers of gas turbine engines), Kazan, Kazanskii gosudarstvennyi tekhnicheskii universitet, 2004, 220 p.

  9. Baklanov A.V., Neumoin S.P. A technique of gaseous fuel and air mixture quality identification behind the swirl burner of gas turbine engine combustion chamber. Russian Aeronautics, 2017, vol. 60, no. 1, pp. 90–96.

  10. Baklanov A.V. Low-emission combustion chamber of diffusion type employing micro flame burning process for converted aircraft gas turbine engine. Aerospace MAI Journal, 2017, vol. 24, no. 2, pp. 57-68.

  11. Baklanov A.V., Markushin A.N., Tsyganov N.E. Vestnik Kazanskogo gosudarstvennogo tekhnicheskogo universiteta im. A.N. Tupoleva, 2014, no. 3, pp. 13-18.

  12. Gritsenko E.A., Danil’chenko V.P., Lukachev S.V. et al. Nekotorye voprosy proektirovaniya aviatsionnykh gazoturbinnykh dvigatelei (Some issues of aircraft gas turbine engines designing), Samara, SNTs RAN, 2002, 527 p.

  13. Sadiki A., Repp S., Schneider C., Dreizler A., Janicka J. Numerical and experimental investigations of confined swirling combusting flows. Progress in Computational Fluid Dynamics, an International Journal, 2003, vol. 3, no. 2-4, pp. 78-88. DOI: 10.1504/PCFD.2003.003778

  14. Zheng H., Zhang Z., Li Y., Li Z. Feature-Parameter-Criterion for Predicting Lean Blowout Limit of Gas Turbine Combustor and Bluff Body Burner. Mathematical Problems in Engineering, 2013, vol. 2013. Article ID 939234, 17 p. DOI: 10.1155/2013/939234

  15. Roy G.D., Frolov S.M., Netzer D.W., Borisov A.A. High-Speed Deflagation and Detonation: Fundamentals and Control. ELEX-KM Publishers, 2001, 357 p.

  16. Kiesewetter F., Konle M., Sattelmayer T. Analysis of Combustion Induced Vortex Breakdown Driven Flame Flashback in a Premix Burner with Cylindrical Mixing Zone. Journal of Engineering for Gas Turbines and Power, 2007, vol. 129, no. 4, pp. 929–936. DOI: 10.1115/1.2747259

  17. 17. Lieuwen T.C., Yang V. Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling. Progress in Astronautics and Aeronautics, vol. 210. AIAA, Reston, VA, 2005, 657 p.

  18. Acharya V., Lieuwen T. Role of Azimuthal Flow Fluctuations on Flow Dynamics and Global Flame Response of Axisymmetric Swirling Flames. AIAA SciTech: 52nd Aerospace Sciences Meeting (13-17 January 2014, National Harbor, Maryland). 2014, pp. 13-17. DOI: 10.2514/6.2014-0654

  19. Durbin M.D., Vangsness M.D., Ballal D.R., Katta V.R. Study of Flame Stability in a Step Swirl Combustor. Journal of Engineering for Gas Turbines and Power, 1996, vol. 118, no. 2, pp. 308- 315. DOI: 10.1115/1.2816592

  20. Gokulakrishnan P., Fuller C.C., Klassen M.S., Joklik R.G., Kochar Y.N., Vaden S.N., Seitzman J.M. Experiments and modeling of propane combustion with vitiation. Combustion and Flame, 2014, vol. 161, no. 8, pp. 2038-2053. DOI: 10.1016/j.combustflame.2014.01.024

  21. Kanilo P.M., Podgornyi A.N., Khristich V.A. Energeticheskie i ekologicheskie kharakteristiki GTD pri ispol’zovanii uglevodorodnykh topliv i vodoroda (Energy and environmental characteristics of GTE when utilizing hydrocarbon fuels and hydrogen), Kiev, Naukova dumka, 1987, 224 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI