Aeronautical and Space-Rocket Engineering
Thermal engines, electric propulsion and power plants for flying vehicles
DOI: 10.34759/vst-2020-3-167-185
Аuthors
1*, 2**, 1***1. Siberian State University of Science and Technology named after academician M.F. Reshetnev, 31, Krasnoyarsky Rabochy av., Krasnoyarsk, 660014, Russia
2. Krasnoyarsk Machine-Building Plant, 29, Krasnoyarsky Rabochy newspaper av., Krasnoyarsk, 660123, Russia
*e-mail: dla2011@inbox.ru
**e-mail: arngoldanna@mail.ru
***e-mail: nazarov@.sibsau.ru
Abstract
The sections of dynamically non-stabilized flows characteristic for the elements of air-gas channels of the turbopump units of the liquid rocket engines are being under consideration. Sector of variable cylindrical and rectangular cross-section, rotational flows in the cavities with immovable walls, and with immovable and rotating walls are studied. Inlet and outlet devices, sidelong cavities between rotor and stator, the cavities of hydrodynamic seals, as well as elements of inter-blade channel of the centrifugal pumps and gas turbines relate to the characteristic elements.
Due to the characteristic features of the operating and structural parameters, the initial sections of dynamically non-stabilized flows are predominant in the air-gas channels of the supply units. These sections affect significantly the energy parameters of the unit and thermal exchange processes and, as a consequence, the reliability of structural elements. Both, laminar and turbulent flow modes of the working fluid are being realized in the characteristic elements of the supply systems.
Using methods of the of the spatial boundary layer theory, the characteristic thicknesses of the boundary layer such as dynamic boundary layer thickness, the displacement thickness and momentum loss thickness were determined. Dependencies for determining the flow core velocity, which are necessary for estimating losses depending on the length of characteristic sections were obtained. To determine correctly the energy parameters, the right choice of the friction laws and velocity profiles in the boundary layer, as well as accounting for the initial section are necessary. The obtained dependencies are accounting for the velocity distribution profile in the boundary layer at the characteristic sections for the cases of both laminar and turbulent modes.
Keywords:
section of dynamically non-stabilized flow, velocity, losses in length, spatial boundary layerReferences
-
Kiselev F.D. Fracture diagnostics and operational workability evaluation of working turbine blades of aircraft engine. Aerospace MAI Journal, 2019, vol. 26, no. 4, pp. 108-122. DOI: 10.34759/vst-2019-4-108-122
-
Grigor’ev V.A., Zagrebel’nyi A.O., Kalabuhov D.S. Updating parametric gas turbine engine model with free turbine for helicopters. Aerospace MAI Journal, 2019, vol. 26, no. 3, pp. 137-143.
-
Mileshin V.I., Semenkin V.G. Computational study of Reynolds number effect on the typical first stage of a high-pressure compressor. Aerospace MAI Journal, 2018, vol. 25, no. 2, pp. 86-98.
-
Il’inkov A.V., Gabdrakhmanov R.R., Takmovtsev V.V., Shchukin A.V. Effect of centrifugal mass forces on heat transfer when airflow of concave surface with transverse projections. Aerospace MAI Journal, 2018, vol. 25, no. 1, pp. 39-48.
-
Gorelov Yu.G., Strokach E.A. Conformities analysis of heat transfer coefficient calculation from the gas at high-pressure turbines entry nozzle blade edges. Aerospace MAI Journal, 2016, vol. 23, no. 1, pp. 80-85.
-
Shcherbakov M.A., Vorobyov D.A., Maslakov S.A., Ravikovich Yu.A. Calculation of heat-transfer coefficient on a turbine blade airfoil in abnormal modes. Aerospace MAI Journal, 2013, vol. 20, no. 3, pp. 95-103.
-
Kraeva E.M. Energy parameters of high-speed pumps of low flow. Aerospace MAI Journal, 2011, vol. 18, no. 3, pp. 104-109.
-
Zuev A.A., Nazarov V.P., Arngol’d A.A., Petrov I.M. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Aerokosmicheskaya tekhnika, 2019, no. 57, pp. 17-31. DOI: 10.15593/2224-9982/2019.57.02
-
Zuev A.A., Nazarov V.P., Arngol’d A.A., Petrov I.M. Sibirskii zhurnal nauki i tekhnologii, 2019, vol. 20, no. 2, pp. 219–227. DOI: 10.31772/2587-6066-2019-20-2-219-227
-
Lai F., Zhu X., Li G., Zhu L., Wang F. Numerical Research on the Energy Loss of a Single-Stage Centrifugal Pump with Different Vaned Diffuser Outlet Diameters. Energy Procedia, 2019, vol. 158, pp. 5523–5528. DOI: 10.1016/j.egypro.2019.01.592
-
Jiang W., Li G., Liu P., Fu L. Numerical investigation of influence of the clocking effect on the unsteady pressure fluctuations and radial forces in the centrifugal pump with vaned diffuser. International Communications in Heat and Mass Transfer, 2016, vol. 71, pp. 164–171. DOI: 10.1016/j.icheatmasstransfer.2015.12.025
-
Lorusso M., Capurso T., Torresi M., Fortunato B., Fornarelli F., Camporeale S.M., Monteriso R. Efficient CFD evaluation of the NPSH for centrifugal pumps, Energy Procedia, 2017, vol. 126, pp. 778–785. DOI: 10.1016/j.egypro.2017.08.262
-
Wang C., Shi W., Wang X., Jiang X., Yang Y., Li W., Zhou L. Optimal design of multistage centrifugal pump based on the combined energy loss model and computational fluid dynamics. Applied Energy, 2017, vol. 187, pp. 10–26. DOI: 10.1016/j.apenergy. 2016.11.046
-
Bakhshan Y., Omidvar A. Calculation of friction coefficient and analysis of fluid flow in a stepped micro-channel for wide range of Knudsen number using Lattice Boltzmann (MRT) method. Physica A: Statistical Mechanics and Its Applications, 2015, vol. 440, pp. 161–175. DOI: 10.1016/j.physa.2015.08.012
-
Basit M.A., Tian W., Chen R., Qiu S., Su G. Numerical study of laminar flow and friction characteristics in narrow channels under rolling conditions using MPS method. Nuclear Engineering and Technology, 2019, vol. 51, no. 8, pp. 1886-1896. DOI: 10.1016/j.net.2019.06.001
-
Galaktionov A.Yu., Khlupnov A.I. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie, 2015, no. 5(104), pp. 4–13. DOI: 10.18698/0236-3941-2015-5-4-13
-
Afanas’ev V.N., Egorov K.S., Kon Dekhai. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie, 2018, no. 6, pp. 72–89. DOI: 10.18698/0236-3941-2018-6-72-89
-
Martirosyan A.A., Mileshin V.I., Druzhinin Ya.M., Kozhemyako P.G. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie, 2019, no. S, pp. 115–130. DOI: 10.18698/0236-3941-2019-2-115-130
-
Burger J., Haldenwang R., Alderman N. Friction factor-Reynolds number relationship for laminar flow of non-Newtonian fluids in open channels of different cross-sectional shapes. Chemical Engineering Science, 2010, vol. 65, no. 11, pp. 3549–3556. DOI: 10.1016/j.ces.2010.02.040
-
Gorskii V.V., Leonov A.G., Loktionova A.G. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie, 2019, no. 3(126), pp. 17–28. DOI: 10.18698/0236-3941-2019-3-17-28
-
Zuev A.A., Nazarov V.P., Arngol’d A.A. Determining local heat transfer coefficient by a model of temperature boundary layer in gas turbine cavity of rotation. Aerospace MAI Journal, 2019, vol. 26, no. 2, pp. 99-115.
-
Zimont V.L., Kozlov V.E., Praskovskii A.A. Uchenye zapiski TsAGI, 1981, vol. XXII, no. 1, pp. 145-152.
-
Ryazhskikh A.V. Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta. Seriya: Matematika. Mekhanika. Fizika, 2017, vol. 9, no. 3, pp. 34-40. DOI: 10.14529/mmph170305
-
Sabel’nikov V.A., Smirnykh E.A. Uchenye zapiski TsAGI, 1985, vol. 16, no. 4, pp. 59-64.
-
Simakov N.N. Izvestiya vysshikh uchebnykh zavedenii. Seriya: Khimiya i khimicheskaya tekhnologiya, 2006, vol. 49, no. 3, pp. 93-97.
-
Sterligov V.A., Manukovskaya T.G. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta, 2010, vol. 6, no. 7, pp. 157-161.
-
Durst F., Ray S., Ünsal B., Bayoumi O.A. The development lengths of laminar pipe and channel Flows. Journal of Fluids Engineering, 2005, vol. 127, no. 6, pp. 1154–1160. DOI: 10.1115/1.2063088
-
Ryazhskikh A.V. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaya matematika. Informatika. Protsessy upravleniya, 2012, no. 3, pp. 98-102.
-
Zhuikov D., Nazarov V.P. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 2016, no. 1, pp. 126-131.
-
Schlichting H., Gersten K. Grenzschicht-Theorie. Springer, Auflage, 2006, 822 p.
-
Mikheev M.A., Mikheeva I.M. Osnovy teploperedachi (Heat Transfer Basics), Moscow, Energiya, 1977, 344 p.
-
Kays W.M. Convective heat and mass transfer. McGraw-Hill Science/Engineering/Math. Third edition, 1993, 480 p.
mai.ru — informational site of MAI Copyright © 1994-2024 by MAI |