Analysis of selective laser fusion technology application for the CubeSat nano-satellites skeleton structures manufacturing

Aeronautical and Space-Rocket Engineering

Innovation technologies in aerospace activities


DOI: 10.34759/vst-2020-3-219-228

Аuthors

Borshchev Y. P.1*, Sysoev V. K.1**, Yudin A. D.1, 2***

1. Lavochkin Research and Production Association, NPO Lavochkin, 24, Leningradskay str., Khimki, Moscow region, 141400, Russia
2. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: BorshchevIUP@laspace.ru
**e-mail: SysoevVK@laspace.ru
***e-mail: yudin@lasapace.ru

Abstract

The forecast of the nanosatellite launches in the near future reveals steady growth. The development of technologies for removing spacecraft, exhausted their resources, from the working orbit is an urgent task. Equipping the Cubesat nanosatellites with a retraction device increases launch costs by up to 50%. The structural elements expenses are up to 25%. Thus, the works on studying new materials for the hulls and technologies for their manufacturing to reduce labor intensity are underway. Design of space structural systems is a balance between the weight, strength and rigidity. The standardized housing of the CubeSat module is being developed in accordance with the CubeSat Design Specification rev.13 and has mass-and-size limitations and rigidity requirements. The most common housing materials are Al 6082 or Al 7075 alloys. The UPSat composite structure from T300-5208 Carbon Hexcel unidirectional epoxy for the first Greek CubeSat is also known. Our work employs selective laser melting technology to manufacture the housing of the 1U module of CubeSats nanosatellites. When comparing the the three housings of the 1U volume, manufactured from these three materials, the lightest one is the housing made of composite material T300-5208. Its weight is 104.5 g versus 155 g obtained from an aluminum alloy 7075. The housing fabricated by the laser sintering is the heaviest, 216 g. However, the mass can be comparable with the composite version by reducing the wall thickness or growing a «mesh» structure. Parts from the ASP-40 AlSi10Mg powder alloy will be two times worse by the mechanical strength than aluminum ones. The specific strength of the unidirectional carbon fiber, compared with aluminum, is six times higher along the fibers. In the transverse directions, the properties of carbon fiber are lower by the order of magnitude.

The advantage of the SLM technology consists in the possibility of structural formation of housing and its fasteners for the servicing equipment, which cannot be fabricated by conventional machining. Besides, when developing a housing part, the effect of space radiation can be computed, to increase the wall thickness in the area of its maximum impact. The closed structure with the walls thickness of 1.8 mm enhances many times protection from the space radiation, which will increase electronic elements resource and the term of the nano-satellite active life.

Keywords:

space debris, near-Earth space, CubeSat nanosatellite, additive technologies, spacecraft hull

References

  1. Programmy zapuskov CubeSat, https://www.cubesat.org/missions

  2. Postavshchiki CubeSat, https://www.cubesat.org/new-index#anchor-buses

  3. Komplekt CubeSat Kit, http://www.cubesatkit.com

  4. Zapuski CubeSat, https://www.nanosats.eu

  5. Usovik I.V., Darnopykh V.V., Malyshev V.V. Methodology of evolution of technogenic pollution assessment of low Earth orbits with regard to mutual collisions and active space debris removal. Aerospace MAI Journal, 2015, vol. 22, no. 3, pp. 54-62.

  6. Requirements on Space Debris Mitigation for ESA projects. ESA/ADMIN/IPOL. April 2008, Paris.

  7. Process for Limiting Orbital Debris. NASA Technical Standard NASA-STD-8719.14A. Dec. 8, 2011.

  8. Izdeliya kosmicheskoi tekhniki. Obshchie trebovaniya k kosmicheskim sredstvam po ogranicheniyu tekhnogennogo zasoreniya okolozemnogo kosmicheskogo prostranstva. GOST R 52925-2008 (Space technology products. General requirements for space facilities to limit technogenic contamination of near-Earth space. State Standard R 52925-2008), Moscow, Standartinform, 2008, 8 p.

  9. Nesterin I.M., Pichkhadze K.P., Sysoev V.K., Finchenko V.S., Firsyuk S.O., Yudin A.D. Vestnik NPO im. S.A. Lavochkina, 2017, no. 3(37), pp. 20–26.

  10. Modul’naya struktura CubeSat, https://www.cubesatshop.com/product/1-unit-cubesat-structure

  11. Modul’naya struktura CubeSat kompanii Pumpkin, http://www.pumpkininc.com/content/doc/forms/pricelist.pdf

  12. Modul’naya struktura CubeSat kompanii ISIS, https://www.isispace.nl/wp-content/uploads/2018/07/ISIS-1U-CubeSat-Brochure.pdf

  13. Modul’naya struktura CubeSat kompanii “Sputniks”, https://sputnix.ru/ru/priboryi/pribory-cubesat

  14. Modul’naya struktura CubeSat kompanii AAC-Clyde, https://www.aac-clyde.space/assets/000/000/080/ZAPHOD_original.pdf

  15. Ampatzoglou A., Baltopoulos A., Kotzakolios A., Kostopoulos V. Qualification of Composite Structure for Cubesat Picosatellites as a Demonstration for Small Satellite Elements. International Journal of Aeronautical Science & Aerospace Research (IJASAR), 2014, vol. 1, no. 1, pp. 1-10. DOI: 10.19070/2470-4415-140001

  16. Ryabov A.A., Romanov V.I., Maslov E.E., Strelets D.Yu., Kornev A.V., Ivanov A.I. Comparative analysis impulse deformation of aircraft structure elements made of aluminum alloy and composite material. Aerospace MAI Journal, 2015, vol. 22, no. 2, pp. 152-161.

  17. Nazarov A.P. Razrabotka tekhnologicheskogo protsessa izgotovleniya slozhnoprofil’nykh detalei iz zharoprochnogo kobal’tovogo splava metodom selektivnogo lazernogo splavleniya (Development of the technological process for complex-profile parts manufacturing from a heat-resistant cobalt alloy by selective laser fusion), Doctor’s thesis, Moscow, MGTU “STANKIN”, 2013, 139 p.

  18. Kondratenko V.S., Tretiyakova O.N., Shevchenko G.Yu. Development of tools for the controlling laser-processing equipment with a various kinematic schemes. Aerospace MAI Journal, 2015, vol. 22, no. 2, pp. 121-131.

  19. 3D printer SLM 280 HL, https://3d-m.ru/3d-printer-slm-280-hl

  20. AlSi10Mg alyuminievyi splav, https://can-touch.ru/materials/3d-printing-alsi10mg

  21. Stoyakina E.A., Kurbatkina E.I., Simonov V.N., Kosolapov D.V., Gololobov A.V. Trudy VIAM, 2018, no. 2. DOI: 10.18577/2307-6046-2018-0-2-8-8.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI