Long-term storage impact on spacecraft temperature-regulating coating elements characteristics

Aeronautical and Space-Rocket Engineering

Innovation technologies in aerospace activities


DOI: 10.34759/vst-2020-4-222-228

Аuthors

Vyatlev P. A.1*, Sergeev D. V.1**, Sysoev A. K.2***, Sysoev V. K.1****

1. Lavochkin Research and Production Association, NPO Lavochkin, 24, Leningradskay str., Khimki, Moscow region, 141400, Russia
2. Don State Technical University, DSTU, 1, Gagarin square, Rostov-on-Don, 344003, Russia

*e-mail: vyatlev@laspace.ru
**e-mail: sergeevdv@laspace.ru
***e-mail: sdv@laspace.ru
****e-mail: SysoevVK@laspace.ru

Abstract

Thin glass elements made of K-208 brand of radiation-resistant optical glass are employed as protective coatings for solar cells and thermo-optical coatings for radiators-heat exchangers of spacecraft thermal control systems.

The glass elements manufacturing technology is based on heating polished glass blocks fr om K-208 glass to highly viscous state with subsequent glass tape extrusion through the stainless steel die.

The glass tape size-cutting and blanks obtaining of the required size is performed with diamond tools for scribing, or by the laser thermosplitting technique.

The presented article studies strength characteristics and heat resistance of glass elements fabricated by various techniques after the long-term storage process, which partially models operation process of such elements in space.

The test results reveal that samples fabricated by the laser thermosplitting method have the same strength after long-term storage, as samples tested after their manufacturing in 2007. This can be explained by the fact that this technology does not produce edge effects, which define the end strength of glass elements. The strength of the samples obtained by the diamond scribbling deteriorated after such a long-term storage period, which is stipulated by the temporal evolution of edge defects.

Thermal resistance of the K-208 ultra-thin glass with the edge obtained as the result of its laying-out by laser is at least 20-30% higher than with the edge obtained by the laser scribing which is of prime importance for the products employed in space engineering, wh ere large temperature drops occur.

The obtained results of experiments confirm high efficiency of the controlled laser thermosplitting while glass elements manufacturing from the K-208 thin glass for the spacecraft temperature-controlling coatings.

Mechanical strength and thermal resistance of glass elements after long-term storage are sufficient for their application in space-rocket engineering products.

Keywords:

temperature-regulating glass coatings, mechanical strength of glass elements, controlled laser thermosplitting

References

  1. Finchenko V.S., Kotlyarov E.Yu., Ivankov A.A. Sistemy obespecheniya teplovykh rezhimov avtomaticheskikh mezhplanetnykh stantsii (Systems for thermal modes ensuring of automatic interplanetary stations), Khimki, NPO Lavochkina, 2018, 400 p.

  2. Arbuzov V.I. Osnovy radiatsionnogo opticheskogo materialovedeniya (Fundamentals of radiative optical material science), St. Petersburg, SPbGUITMO, 2008, 284 p.

  3. Barker T.C. The Glassmakers – Pilkington 1826-1976. UK, Weidenfeld & Nicolson, 1977, 224 p.

  4. Pilkington Space Technology. Low Solar Coating for Coverglasses. Pilkington, e-catalog, 2020.

  5. Hołyńska M., Tighe A., Semprimoschnig C. Coatings and Thin Films for Spacecraft Thermo-Optical and Related Functional Applications. European Space Agency, Advanced Materials Interfaces, 2018, vol. 5, no. 11, p. 1701644. DOI: 10.1002/admi.201701644

  6. Doherty K.A.J., Twomey B., McGlynn S. et al. High-Temperature Solar Reflector Coating for the Solar Orbiter. Journal of Spacecraft and Rockets, 2016, vol. 53, no. 6, pp. 1-8. DOI: 10.2514/1.A33561

  7. Putz B., Wurster S., Edwards T.E.J. et al. Mechanical and optical degradation of flexibe optical solar reflectors during simulated low earth orbit thermal cycling. Acta Astronautica, 2020, vol. 175, pp. 277-289. DOI: 10.1016/j.actaastro.2020.05.032

  8. Doherty K.A.J., Carton J.G., Norman A. et al. A thermal control surface for the Solar Orbiter. Acta Astronautica, 2015, vol. 117, pp. 430-439. DOI: 10.1016/j.actaastro.2015.09.004

  9. Kolesnikov A.V., Paleshkin A.V. Numerical method of modelling of external heat exchange of the space vehicle with any form of external surfaces. Aerospace MAI Journal, 2010, vol. 17, no 4, pp. 81-89.

  10. Kudriavtseva N.S., Malozemov V.V. Joint optimization of mass and power characteristics for spacecraft thermal control system and cooled instruments under specified reliability requirements Propulsion and Power Plants. Aerospace MAI Journal, 2009, vol. 16, no. 1, pp. 5-14.

  11. Svechkin V.P., Savel’ev A.A., Sokolova S.P., Borozdina O.V. Kosmicheskaya tekhnika i tekhnologii, 2017, no. 2(17), pp. 99-107.

  12. Laub B., Venkatapathy E. Thermal protection system technology and facility needs for demanding future planetary missions. European Space Agency. ESA SP-544 (Noordwijk, Netherlands). 2004, pp. 239-247. ISBN 92-9092-855-7

  13. Price M., Kitchin C., Eaves H., Crabb R., Buia P. Solar Cell Coverglasses for Satellites in the Intermediate Eath Orbit. 5th European Space Power Conference Proceedings (21-25 September 1988; Taragonna, Spain), pp. 569-574.

  14. Lipat’ev A.S., Mamadzhanova E.Kh., Ryzhenkov V.S., Vyatlev P.A., Sysoev V.K., Sigaev V.N. Uspekhi khimii i khimicheskoi tekhnologi, 2011, vol. XXV, no. 5(121), pp. 93-97.

  15. Sysoev V.K., Bulkin Yu.N., Chadin V.S., Vyatlev P.A., Zakharchenko A.V. Pis’ma v zhurnal tekhnicheskoi fiziki, 2007, vol. 33, no. 1, pp. 54-59.

  16. Sysoev V.K., Vyatlev P.A., Zakharchenko A.V., Papchenko B.P. Opticheskii zhurnal 2004, vol. 71, no. 2, pp. 41-45.

  17. Kondratenko V.S., Tretiyakova O.N., Shevchenko G.Yu. Development of tools for the controlling laser-processing equipment with a various kinematic schemes. Aerospace MAI Journal, 2015, vol. 22, no. 2, pp. 121-131.

  18. Malov I.E. Naukoemkie tekhnologii v mashinostroenii, 2017, no. 2(78), pp. 36-39.

  19. Nikonorov N.V., Evstrop’ev S.K. Opticheskoe materialovedenie. Osnovy prochnosti opticheskogo stekla (Optical material science. Optical glass strength basics), St. Petersburg, SPbGU ITMO, 2009, 102 p.

  20. Solntsev S.S., Morozov E.M. Razrushenie stekla (Glass destruction). Moscow, URSS, 2018, 152 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI