Determining required turbine cooling air flow rate at the conceptual design stage of gas turbine engine

Aeronautical and Space-Rocket Engineering

Thermal engines, electric propulsion and power plants for flying vehicles


DOI: 10.34759/vst-2021-1-61-73

Аuthors

Filinov E. P.*, Kuz'michev V. S.**, Tkachenko A. Y.***, Ostapyuk Y. A.****

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

*e-mail: filinov@ssau.ru
**e-mail: kuzm@ssau.ru
***e-mail: tau@ssau.ru
****e-mail: oya92@mail.ru

Abstract

The primary trend in effectiveness improving of gas turbine engines consists in coordinated increase of the working process parameters, such as turbine inlet temperature (TIT) and overall pressure ratio (OPR), bypass ratio (BPR) together with efficiency increasing of engine subassemblies. Alongside with that, the requirements on the engine reliability and life enhancement are being put forward.

Ensuring the required engine life at high gas temperatures prior to the turbine is possible only by turbine blades and vanes cooling, or switching to the blades materials, which do not require cooling, such as ceramics. The turbine cooling strongly affects the engine efficiency, comparable to the turbine aerodynamic characteristics, and should be accounted for while the gas turbine engine working process optimization.

The turbine blades’ design and materials permanent improvement leads to decreasing the air flow volume required for the turbines cooling. Thus, the experimental and theoretical data on the aircraft gas turbine engine turbines cooling require regular analysis and generalization.

One of the first models for predicting the required air flow rate for cooling was developed by Holland and Thake in 1980. Ever since these models are permanently developing and become more and more detailed.

It is well-known that the increased air flow rate for turbines cooling always entails the specific fuel consumption increase and the engine specific thrust (power) decrease. The engine specific parameters exert determinative affect the engine efficiency figures and, hence, its parameters optimization criteria at the conceptual design stage.

In this respect, the necessity to analyze and generalize the well-known dependencies of relative air flow rate on the turbine cooling aroused.

As consequence of the performed studies, the published theoretical and experimental data on the aviation gas turbine engines’ turbines cooling was analyzed. The generalized graphical dependencies allowed obtaining the models, on which basis the algorithms for determining the required air flow rate of the aviation gas turbine engines’ turbines cooling dependence on the gas temperature prior to the turbine. These dependencies can be employed while various tasks solving at the engine conceptual design stage. Particularly, the universal model, allowing determine the required air flow rate for cooling depending on the cooling depth in the wide range of gas temperatures prior to the turbine, ensuring goal functions unimodelity while solving optimization problems.

The studies continuation will consist in developing more accurate models of the aviation gas turbine engines’ turbines being cooled for conceptual design stage, in particular by accounting for the new structural solutions.

Keywords:

gas turbine engine, conceptual design, turbine cooling, working process parameters optimization, required cooling air flow rate, blade cooling, vane cooling, disk cooling, turbine efficiency

References

  1. Tiemstra F.S. Design of a semi-empirical tool for the evaluation of turbine cooling requirements in a preliminary design stage. Master Thesis. Delft University of Technology Faculty of Aerospace Engineering. 2014, 147 p. URL: http://resolver.tudelft.nl/uuid:225cfccd-2fc3-4a4d-a8a8-c24bd24bae44

  2. Kopelev S.Z. Okhlazhdaemye lopatki gazovykh turbin: Teplovoi raschet i profilirovanie (Cooled Gas Turbine Blades: Thermal Calculation and Profiling), Moscow, Nauka, 1983, 146 p.

  3. Ba W., Wang Z., Li X., Gu C. Three-dimensional optimal design of a cooled turbine considering the coolant-requirement change. Open physics, 2019, vol. 17, issue 1, pp. 768-778. DOI: 10.1515/phys-2019-0080

  4. Ba W., Wang X.-C., Li X.-S., Ren X.-D., Gu C.-W. Definition of cycle based comprehensive efficiency of a cooled turbine. Energy, 2019, vol. 168, pp. 601-608. DOI: 10.1016/j.energy.2018.11.137

  5. Young J.B., Horlock J.H. Defining the efficiency of a cooled turbine. Journal of Turbomachinery, 2006, vol. 128, issue 4, pp. 658-667. DOI: 10.1115/1.2218890

  6. Salpingidou C., Tsakmakidou D., Vlahostergios Z., Misirlis D.M., Flouros M., Yakinthos K. The effect of turbine blade cooling on the performance of recuperative cycles for gas turbines applications. Chemical engineering transactions, 2017, vol. 61, pp. 1027-1032. DOI: 10.3303/CET1761169

  7. Sahu M.K., Sanjay. Investigation of the effect of air film blade cooling on thermoeconomics of gas turbine based power plant cycle. Energy, 2016, vol. 115. Part 1, pp. 1320-1330. DOI: 10.1016/j.energy.2016.09.069

  8. Song Y., Gu C.-W., Ji X.-X. Development and validation of a full-range performance analysis model for a three-spool gas turbine with turbine cooling. Energy, 2015, vol. 89, pp. 545-557. DOI: 10.1016/j.energy.2015.06.015

  9. Vassiliev V., Granovskiy A., Lomakin N. Impact of turbine blade internal cooling on aerodynamic loss. ASME Turbo Expo 2015: Power for Land, Sea and Air (15–19 June 2015; Montreal, Quebec, Canada). Paper No GT2015-42696. DOI: 10.1115/GT2015-42696

  10. Holland M.J., Thake T.F. Rotor blade cooling in high pressure turbines. Journal of Aircraft, 1980, vol. 17, no. 6, pp. 412-418. DOI: 10.2514/3.44668

  11. Ainley D.G. Internal air-cooling for turbine blades: A general design survey. Aeronautical research council reports and memorandum, 1957, no. 3013, 40 p.

  12. Consonni S. Performance prediction of gas/steam cycles for power generation. PhD thesis No. 1893-T. Princeton University, 1992.

  13. Torbidoni L., Horlock J.H. A new method to calculate the coolant requirements of a high-temperature gas turbine blade. Journal of Turbomachinery, 2005, vol. 127, no. 1, pp. 191-199. DOI: 10.1115/1.1811100

  14. Horlock J.H., Watson D.T., Jones T.V. Limitations on gas turbine performance imposed by large turbine cooling flows. Journal of Engineering for Gas Turbines and Power, 2001, vol. 123, no. 3, pp. 487-494. DOI: 10.1115/1.1373398

  15. Vadlamudi T.C., Kommineni R., Katuru B.P. Exergy assessment of air film blade cooled combined power cycle plant. International journal of ambient energy, 2018, vol. 41, issue 9, pp. 994-1006. DOI: 10.1080/01430750.2018.1501740

  16. Vadlamudi T.C., Kommineni R., Katuru B.P. Performance augmentation of combined cycle power plant under the control of differing open loop cooling techniques to the gas turbine blades. International Journal of Ambient Energy, 2020, pp. 1-13. DOI: 10.1080/01430750.2020.1712249

  17. Jordal K. Gas turbine cooling modeling — thermodynamic analysis and cycle simulations. Thesis for the Degree of Licentiate in Engineering. — Division of thermal power engineering department of heat and power engineering Lund Institute of Technology, Sweden, 1999, 93 p.

  18. Jiang C., Chen H.-P. Study on approximate calculation of cooling air allocation for gas turbine. Asia-pacific Power and Energy Engineering Conference (27-31 March 2009; Wuhan, China), 2009. DOI: 10.1109/APPEEC.2009.4918801

  19. Yin F., Tiemstra F.S., Rao A.G. Development of a flexible turbine cooling prediction tool for preliminary design of gas turbines. Journal of Engineering for Gas Turbines and Power, 2018, vol. 140, issue 9. Paper No GTP-18-1043. DOI: 10.1115/1.4039732

  20. Yin F., Rao A.G., Bhat A., Chen M. Performance assessment of a multi-fuel hybrid engine for future aircraft. Aerospace Science and Technology, 2018, vol. 77, pp. 217-227. DOI: 10.1016/j.ast.2018.03.005

  21. Shvets I.T., Dyban E.P. Vozdushnoe okhlazhdenie detalei gazovykh turbin (Air cooling of gas turbine parts), Kiev, Naukova dumka, 1974, 488 p.

  22. Li C., Liu J.-J. A one-dimensional analytical method for turbine blade preliminary cooling design. ASME Turbo Expo 2016: Power for Land, Sea and Air (13–17 June 2016; Seoul, South Korea). Paper No GT2016-56783. DOI: 10.1115/GT2016-56783

  23. Li H.-B., Gu C., Song Y. Through-flow calculation with a cooling model for cooled turbines. Proceedings of the institution of mechanical engineers, Part A: Journal of Power and Energy, 2015, vol. 229, issue 8, pp. 862-875. DOI: 10.1177/0957650915594294

  24. Li H., Gu C. Through Flow Calculations for Convective Cooling Turbines. ASME Turbo Expo 2014: Power for Land, Sea and Air (16–20 June 2014; Düsseldorf, Germany). Paper No. GT2014-26504. DOI: 10.1115/GT2014-26504

  25. Le T.Z., Nesterenko V.G. Mezhdunarodnyi nauchno-issledovatel’skii zhurnal, 2018, no. 1(67). Part. 1, pp. 84-90. DOI: 10.23670/IRJ.2018.67.087

  26. Kuz’michev V.S., Trofimov A.A. Proektnyi raschet osnovnykh parametrov turbokompressorov aviatsionnykh GTD (Design calculation of the aircraft gas turbines and compressors main parameters), Kuibyshev, KuAI, 1990, 72 p.

  27. Inozemtsev A.A., Nikhamkin M.A., Sandratskii V.L. Osnovy konstruirovaniya aviatsionnykh dvigatelei i energeticheskikh ustanovok. V 5 t. T. 2. Kompressory. Kamera sgoraniya. Forsazhnye kamery. Turbiny. Vykhodnye ustroistva (Fundamentals of gas turbine engines and power plants designing. Vol. 2. Compressors. Combustion chambers. Afterburners. Turbines. Exhausts), Мoscow, Mashinostroenie, 2008, 365 p.

  28. Tema No.20. Okhlazhdenie gazovykh turbin. URL: https://helpiks.org/3-88101.html

  29. Gritsenko E.A., Danil’chenko V.P., Lukachev S.V. et al. Nekotorye voprosy proektirovaniya aviatsionnykh gazoturbinnykh dvigatelei (Some issues of aviation gas turbine engines designing), Samara, SNTs RAN, 2002, 527 p.

  30. Pavlenko G.V., Volov A.G. Gazodinamicheskii raschet osevoi gazovoi turbiny (Gasdynamic designing of axial gas turbine), Khar’kov, KhAI, 2007, 76 p.

  31. Kholshchevnikov K.V., Emin O.N., Mitrokhin V.T. Teoriya i raschet aviatsionnykh lopatochnykh mashin (Theory and calculations of aviation vane machines), Moscow, Mashinostroenie, 1986, 432 p.

  32. Kulagin V.V., Kuz’michev V.S. Teoriya, raschet i proektirovanie aviatsionnykh dvigatelei i energeticheskikh ustanovok: uchebnik v 2 kn. Kn. 1. Osnovy teorii GTD. Rabochii protsess i termogazodinamicheskii analiz (Fundamentals of gas turbine engines theory. Working process and thermodynamic analysis. Book 1. Joint operation of engine elements and its performance), Moscow, Innovatsionnoe mashinostroenie, 2017, 336 p.

  33. Grigor’ev V.A., Zhdanovskii A.V., Kuz’michev V.S. et al. Vybor parametrov i termodinamicheskie raschety aviatsionnykh gazoturbinnykh dvigatelei (Parameters selection and thermodynamic calculations of aviation gas turbine engines), Samara, SGAU, 2009, 202 p.

  34. Derevyanko A.V., Zhuravlev V.A., Zikeev V.V. et al. Osnovy proektirovaniya turbin aviadvigatelei (Fundamentals of aviation turbines designing), Moscow, Mashinostroenie, 1988, 328 p.

  35. Potkin A.N. Razrabotka kompleksnogo podkhoda k proektirovaniyu okhlazhdaemykh vysokotemperaturnykh gazovykh turbin s tsel’yu snizheniya riskov i srokov razrabotki (Complex approach to high-temperature cooled gas turbines designing for risks and development time reduction), Doctor’s thesis, Rybinsk, Rybinskii gosudarstvennyi aviatsionnyi tekhnicheskii universitet imeni P.A. Solov’eva, 2014, 134 p.

  36. Zhang J., Zhang S., Wang C., Tan X. Recent advances in film cooling enhancement: a review. Chinese Journal of Aeronautics, 2020, vol. 33, issue 4, pp. 1119-1136. DOI: 10.1016/j.cja.2019.12.023

  37. Kumar S., Singh O. Thermodynamic evaluation of gas/steam combined cycle performance with active controlled film cooling. Distributed Generation and Alternative Energy Journal, 2014, vol. 29, issue 1, pp. 49-60. DOI: 10.1080/21563306.2014.10781515

  38. Gurevich O.S., Gol’berg F.D., Petukhov A.A., Zuev S.A. «Virtual engine» software usage for air bleed control in gte units’ cooling systems. Aerospace MAI Journal, 2017, vol. 24, no. 3, pp. 83-94.

  39. Kolychev A.V., Kernozhitsky V.A., Levikhin A.A. Cooling system of gas turbine engine turbine blades made of heat-resisting alloys and conductive ceramics. Aerospace MAI Journal, 2018, vol. 25, no 3, pp. 143-150.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI