Evaluation of quality indicator dispersion depending on technological process parameters

Machine-building Engineering and Machine Science

Mechanical engineering technology


DOI: 10.34759/vst-2021-1-175-186

Аuthors

Kovalev A. A.*, Rogov N. V.**

Bauman Moscow State Technical University, MSTU, 5, bldg. 1, 2-nd Baumanskaya str., Moscow, 105005, Russia

*e-mail: kovalevarta@gmail.com
**e-mail: nikolayrogov_24@mail.ru

Abstract

The article addresses the issue of determining the nominal value of roughness and its dispersion as the result of the outer surface of the «Rotor shaft of a gas turbine engine» part turning, being an element of the rotor part of an aircraft gas turbine engine.

The article describes a technique for establishing interrelation between the parameters of technological environments with quality indicators obtained as the result of processing in these technological environments. The technique is illustrated by the example roughness evaluating of the part outer surface as the result of turning.

The article consists of three main parts: introduction, the main part and conclusions.

The introduction performs the analysis of literature related to the problem of establishing interrelations between the technological environments parameters and operational and technical characteristics of products. The rationale for the need to establish such dependencies is being presented.

The main part provides a technique for assessing the value and dispersion of parts’ quality indicators depending on the values of the of technological environments parameters. Based on the results of this evaluation, a conclusion is being made on the probability of finding the value of the considered quality indicator within the specified limits. The technique is being illustrated by the example of roughness forming on the outer surface of the «Rotor shaft of a gas turbine engine» part while fine turning. The required roughness value is no more than Ra0.4. Based on computational results, probability evaluation of obtaining roughness of no more than Ra0.4 is being performed for the two different groups of technological environment parameters. The probability was 0.55 for the option A, and 0.71 for the option B.

It is noted in the conclusions that despite the fact that the probability value is greater for the option B than for the option A, in some cases the option A will be preferable, since the roughness values obtained while processing in a technological environment with these parameter values are of lower dispersion, i.e. more stable. The article indicates that the obtained roughness values will affect the operational and technical characteristics of the product, including reliability.

Keywords:

part surface layer of the quality, edge processing parameters, technological environment parameters, math statistics, random values distribution, distribution density function

References

  1. Gromov V.F., Dunaev V.V., Eryomin M.V., Makarov A.F. Improvement of aviation structure quality and life in mechanical joint. Aerospace MAI Journal, 2010, vol. 17, no. 1, pp. 18-24.

  2. Altunin K.V. Elaborating new specific parameters of a jet engine. Aerospace MAI Journal, 2020, vol. 27, no. 3, pp. 146-154. DOI: 10.34759/vst-2020-3-146-154

  3. Kuznetsov N.D., Tseitlin V.I., Volkov V.I. Tekhnologicheskie metody povysheniya nadezhnosti detalei mashin. Spravochnik (Technological methods for reliability increasing of machine parts. Handbook), Moscow, Mashinostroenie, 1992, 304 p.

  4. Fadeev L.L., Albagachiev A.Yu. Povyshenie nadezhnosti detalei mashin (Reliability improving of machine parts), Moscow, Mashinostroenie, 1993, 96 p.

  5. Demin F.I., Pronichev N.D., Shitarev I.L. Tekhnologiya izgotovleniya osnovnykh detalei gazoturbinnykh dvigatelei (Manufacturing technology of gas turbine engines basic parts), Samara, SGAU, 2012, 324 p.

  6. Zhou Y., Zhu H., Zhang W. et al. Influence of surface roughness on the friction property of textured surface. Advances in Mechanical Engineering, 2015, vol. 7, no. 2, pp. 1–9. DOI: 10.1177/1687814014568500

  7. Integrirovannaya logisticheskaya podderzhka eksportiruemoi produktsii voennogo naznacheniya. Nomenklatura pokazatelei ekspluatatsionno-tekhnicheskikh kharakteristik, GOST R 56111-2014 (Integrated logistic support of exported military products. Nomenclature of the technical operating capabilities indices, State Standard R 56111-2014), Moscow, Standarty, 2015, 12 p.

  8. Edinaya sistema tekhnologicheskoi dokumentatsii (ESTD). Terminy i opredeleniya osnovnykh ponyatii. GOST 3.1109-82 (Unified system for technological documentation. Terms and definitions of main concepts, State Standard 3.1109-82), Moscow, Standarty, 2012, 98 p.

  9. Nadezhnost’ v tekhnike (SSNT). Sistemy tekhnologicheskie. Terminy i opredeleniya. GOST 27.004-85 (Industrial product dependability. Technological systems. Terms and definitions, State Standard 27.004-85), Moscow, Standarty, 2002, 60 p.

  10. Klimov V.G., Nikitin V.I., Nikitin K.V., Zhatkin S.S., Kogteva A.V. Wear-resistant composites application in repair and modification technology of the GTD rotor blades. Aerospace MAI Journal, 2019, vol. 26, no. 1, pp. 251-266.

  11. Beresnev A.G., Loghunov A.V., Loghachiova A.I. Some problems related to refinement of high-temperature alloys produced by means of granular metallurgy techniques. Aerospace MAI Journal, 2008, vol. 15, no. 3, pp. 83-89.

  12. Ghafarizadeh S., Lebrun G., Chatelain J.-F. Experimental investigation of the cutting temperature and surface quality during milling of unidirectional carbon fiber reinforced plastic. Journal of Composite Materials, 2015, vol. 50, no. 8, pp. 1059–1071. DOI: 10.1177/0021998315587131

  13. Gurgen S., SaCkesen I., Kuуhan M.C. Fatigue and corrosion behavior of in-service AA7075 aircraft component after thermo-mechanical and retrogression and re-aging treatments. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2018, vol. 233, no. 9, pp. 1764–1772. DOI: 10.1177/1464420718784629

  14. Maleki H.N., Chakherlou T.N. A new method for repairing aircraft structures containing aluminum alloy 2024-T3 using a combination of composite patch and bolt clamping. Journal of Composite Materials, 2018, vol. 52, no. 30, pp. 4203–4218. DOI: 10.1177/0021998318777851

  15. Zhang Ping, Wang Youqiang, Wang Qing, Yu Xiao. Dislocation damage and adiabatic shear mechanisms of 7055 aluminum alloy during cutting process. International Journal of Damage Mechanics, 2020, vol. 29, no. 8, pp. 1169–1180. DOI: 10.1177/1056789519894678

  16. Kragel’skii I.V., Dobychin M.N., Kombalov V.S. Osnovy raschetov na trenie i iznos (Fundamentals of friction and wear analysis), Moscow, Mashinostroenie, 1977, 526 p.

  17. Ryzhov E.V. Kontaktnaya zhestkost’ detalei mashin (Contact stiffness of machine parts), Moscow, Mashinostroenie, 1966, 193 p.

  18. Demkin N.B., Ryzhov E.V. Kachestvo poverkhnosti i kontakt detalei mashin (Surface and contact quality of machine parts), Moscow, Mashinostroenie, 1981, 244 p.

  19. Sulima A.M., Shulov V.A., Yagodkin Yu.D. Poverkhnostnyi sloi i ekspluatatsionnye svoistva detalei mashin (Surface layer and operation properties of machine parts), Moscow, Mashinostroenie, 1988, 240 p.

  20. Bez«yazychnyi V.F. Spravochnik. Inzhenernyi zhurnal, 2000, no. 4(37), pp. 9-16.

  21. Deev O.M., Istomin A.B., Kondakov A.I. Metodicheskie ukazaniya k laboratornym rabotam po distsiplinam «Tekhnologiya mashinostroeniya», «Upravlenie kachestvom izdelii» (Guidelines to laboratory work on the «Engineering technology», «Product quality management» disciplines), Moscow, MGTU im. N.E. Baumana, 2011, 45 p.

  22. Smirnov N.V., Dunin-Barkovskii I.V. Kurs teorii veroyatnostei i matematicheskoi statistiki dlya tekhnicheskikh prilozhenii (Course on probability theory and mathematical statistics for technical applications), Moscow, Nauka, 1969, 510 p

  23. Linnik Yu.V. Metod naimen’shikh kvadratov i osnovy matematiko-statisticheskoi teorii obrabotki nablyudenii (The least squares method and the mathematical-statistical theory fundamentals of observation processing), Moscow, Fizmatgiz, 1958, 334 p.

  24. Klyuev V.V., Bolotin V.V., Sosnin F.R. et al. Mashinostroenie. Entsiklopediya. T. IV-3. Nadezhnost’ mashin (Mechanical engineering. Encyclopedia. Reliability of machines), Moscow, Mashinostroenie, 2003, 592 p.

  25. Zelentsov V.V. Osnovy tekhnologii proizvodstva i remonta avtomobilei: kompleks uchebno-metodicheskikh materialov (Fundamentals of automobiles production and repair technology), Nizhnii Novgorod, Nizhegorodskii gosudarstvennyi tekhnicheskii universitet im. R.E. Alekseeva, 2007, 105 p.

  26. Khusu A.P., Vitenberg Yu.R., Pal’mov V.A. Sherokhovatost’ poverkhnostei: Teoretiko-veroyatnostnyi podkhod (Surface roughness. Probabilistic approach), Moscow, Nauka, 1975, 344 p.

  27. Suslov A.G. Kachestvo poverkhnostnogo sloya detalei mashin (Surface layer quality of machine parts), Moscow, Mashinostroenie, 2000, 320 p.

  28. Suslov A.G., Dal’skii A.M. Nauchnye osnovy tekhnologii mashinostroeniya (Scientific fundamentals of mechanical engineering technology), Moscow, Mashinostroenie, 2002, 684 p.

  29. Vasil’ev A.S., Kutin A.A. (eds.) Spravochnik tekhnologa-mashinostroitelya: v 2 t. T. 1 (Handbook of mechanical engineer. In 2 vols. Vol. 1), Moscow, Innovatsionnoe mashinostroenie, 2018, 756 p.

  30. Abrazivnaya i almaznaya obrabotka materialov: Spravochnik (Abrasive and diamond processing of materials. Handbook), Moscow, Mashinostroenie, 1977, 391 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI